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Introduction

According to the general program proposed in the first paper, Koba,
Tati and one of the present authors have given in the second paper a
perfectly relativistic formulation of the quantum electrodynamics, which
deals with the electromagnetic field interacting with the electron field. In
this paper we shall apply the same method to the meson field interacting
with the electromagnetic field.

In doing this some generalizations of the treatment in I and II are
necessary, because in I and II only such cases are considered in which the
interaction energy of the fields under consideration is a scalar quantity whose
densities at two different world points are commutable, provided that these
points lie outside each other's light cones not only at a finite distance but
also at an infinitesimal distance from each other. As stated in I, this is
the case when the interaction part of the Lagrange function does not con-
tain the time derivatives of the potentials describing the fields. However,
in the cases of the meson fields, scalar as well as vectorial, interacting with
electromagnetic field or the nucleon field this simplifying fact does not hold
and the interaction energies are not a scalar. At the same time, the com-
mutablility of the energy densities at two world points breaks down when
these points lie adjacent to each other.

We shall show in this paper that, notwithstanding this complicating

(1) S. Tomonaga: Riken Tho (Bul. IPCR.), 22 (1943) 545, Progr. Theor. Phys. 1 (1946), 27.
This paper will be cited as 1.

(2) Z. Koba, T. Tati and S. Tomonaga: Progr. Theor. Phys. 2 (1947), 101. This paper will
be cited as II.
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situation, we can still build up a theory similar to that described in I and
II. We first treat the simple case of the scalar or the pseudoscalar meson
field interacting with the electromagnetic field, and then go over into the
more complicated case of the vector or the pseudovector meson field.

A. Case of Scalar or Pseudoscalar Meson Field.

§ 1. Density of intcraction emergy. Four-dimensioual
commutation relations between field quantities.

Let L denote the Lagrange density of the total system. This consists
of L, and Ly, Ly being the Lagrange density of the free electromagnetic
field and Lgy that of the scalar or the pseudoscalar meson field including the
terms representing the interaction with the electromagnetic field. Thus:

L=ng+LSM. (1'1)

In this paper, it is more convenient to use the notations of the tensor cal-
culus, not those of the vector calculus as we have done in II. Further we
use the imaginary unit for the time coordinate:

Xy=Ict=1x,. (1.2)
Then we have
1(1 2
Ly= ~Sr {TFMFM_F af"' ]
with j (1:3)
- 04, 04,
R Y. = 3
£, 3I,L Fr mv=1,2 54

where 4;, (=1, 2, 3) denote the components of the vector potential, and
A;=14,, A, being the scalar potential. We have further

6#* ze de
o= L £t N sy
- (G + 8™ N~ A8 ) +48%5, (1)
¢ being the potential describing the scalar (or the pseudoscalar) meson.field.
The Greek suffixes o, B, p, v etc. take four values I, 2, 3 and 4, whereas
the Latin suffixes run from 1 to 3 only.

If now canonically conjugate quantities of 4,, ¢ and ¢* be denoted by
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A}, ¢* and g** respectively, we have

8Ly __ 1,
A=, T
3x4
. aLsR — 1 a¢ 13 *)
g 2 0¢  Tm\ox % w247) L (1-5)
ax4
oL 1 /93¢ ie )
*+ __ SM _______ e M
$ —88,75* 014 icA'y‘ -
0x,

The canonical energy density of the system is obtained by the usual pro-
cedure :

34

A+ +a¢ a¢ *+ .
H=4; = 4+¢ br 8x4¢ (1-6)
=Hy+ Hsy.

In (1.6) the first term /), is the energy density for the electromagnetic
field alone, and the second term A, is that of the meson field including
the interaction terms with the eleetromagnetic field. As in the following
we make no use of A, we give here only the explicit expression for Hgy.

It is defined by

R (-7
This Ay can be separated into two parts:
Hie=Hosg+ i 1-8)
with
Ho= {28 2 —amyprgrovwps) 19)
and

o= e GNP 35 5F)

—tnd (g3 —99)}—(52)As8]. (1-10)
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The first term }?(g,,, in (1.8) is independent of the electromagnetic potentials
and represents the energy density of the free meson field, while the second
term Ay, contains the mesonic as well as the electromagnetic potentials and
represents density of the interaction energy between these two fields, The
expression (1-9) and (1.10) are obtained by the usual procedure by substi-
tuting (1-5) into (1.7).

According to our general schem developed in I, we now transform the
field quantities by means of the unitary operator

U = eGl®) (et He)e (1-11)

Then the transformed quantities- satisfy the fleld equations for the free fields.

*
Especially ¢** and ¢* in Ay can be replaced by -—lrt—-g:?— and —%—;%é—
4 4

7

respectively. Thus we have

()l o) (£) )

ox, 0Oz,

Since, in this way, the field quantities satisfy the field equations for
the free fields; we can obtain the four-dimentional commutation relations

between them :

[4u(X), A,(X')]=—4hc 6,0Dy( X—X')
[#(X), ¢* (X') = —dnific Dy(X—X7) (1)
[#(X), 6(X")]=[¢*(X), $*(X")]=0,

where D; and Dy are the so-called four-dimensional delta-functions belong-
ing respectively to the electromagnetic field and the mesonic field.

Observing (1-12), we find that the interaction energy density is not a
scalar. Although the first term in (1-12) is a scalar, the second term is
not, since in the summation Aj=A4j+ 43+ 4; the fourth component of the
potential is abscent. This situation prevent us from applying directly the
method developed in I. As we shall show in the next paragraph we have
beside this a further difficulty : our i, does not satisfy [Hin(X), Hm(X")]
=0, which would be necessary for the integrability of the generalized
Schrédinger equation.
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§2. Commutation relation between energy densities
at two different worldpoints.

We calculate in this paragraph the cormutator [A(X), H.(X)].
For simplicity, we denote H.(X) by H, H,(X) by H', A(X) by 4,
A(X") by A" etc. Then we have

1, 11=g() | 44435, 5e7)
Byl h-2)- (]
=G [ 350 42 5]
ety e
(53 5]
() Taws, az47} - @1

We now calculate each commutator on the right-hand side of (2-1). Then,
we see first that the fourth term on the right-hand side contains D(X—X")
but not its derivatives. As we are interested only in such pairs of points
one of which is space-like with respect to the other, such terms containing
no derivatives of 2(X—X’) can be replaced by 0. Next we see that the
second and the third terms give rise to the term of the form

ADn(X—X7)

0z,

—Adme{ A, A7 (3% —§*'8) — 4. 4 (§*'8—¢*¢')}

which vanishes, because —a-—D—"(aix—-X—') has non-vanishing value only when
L]

X=X (provided that X and X’ are a space-like pair) where the factor

{.e.«.} vanishes.
In this way only the first term on the right-hand side of (2-1) gives

a non-vanishing contribution :

s * yDll(X—X) 4 #20°Dn( X --X) .
4rﬁc{‘4 Aoy 4 AS=5 7o, } (2:2)

(4, H')=—
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A though the right-hand side of (2:2) vanishes for the pair of points X
and X’ when they lie at a finite "distance from each other and outside each-

other’s light cones, it has a non-vanishing value when they are adjacent to
FDX-X) DX —-X) o

N EYREPA
non-vanishing value when X’ is adjacent to X,
Sj 'Dn(X—X') ‘g
ince —— 357 has thus a non-vanishing value only when X
«0%p
and X are adjacent to each other, (2:2) can be also expressed in the form :

DII(X—'X’)

(#, 1= - o { .t
’ FES 2 a 0x,0x,

each other. Namely, the function

ag.D (X’""X)
’ P k7 L7 11 .
—AS A/ 95——-—--—————-——-—a 57, } (2:3)

This form is more convenient than (2-2) for our latter purpose.

§3. Derivation of the generalized
Schrodinger equation.

As stated in the preceding paragraph, our energy density A does not
satisfy [A, A']=0. But this does in no way prevent that the ¥-vector,
transformed by means of the unitary operator U in (1.11), satisfies the

7 % 23 } _
{Fuwt2- 2 w0, (3:1)
The situation is only so far complicated that we can not go over from
(3-1) immediately into
{mcry+ 2 S0 Lwc=0 (3-2)
i 0C, !

because this necessitates the condition [A(P), H(P')]=0.
In such a situation we proceed in the following manner: we introduce
the operator Ax[C], a function of world point X in one hand* and a func-

* Similarly as in II, X, X7, X7, ...... denote arbitrary world points and 2, P/, P/, ......
such world points lying on C. We use for both kindS of points the same letters xy, 'y,
A7 gy eeens to denote their coordinates, but this makes no confusion in the following consi-
aeration.
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On a Relativistically Invariant Formulation 7

tional of the variable surface C on the other, such that it vanishes, in the
first place, when C is reduced into a plane parallel to the xyz-plane, and
it satisfies, in the second place,

i8 3
) Nt S = . ——b
|z +ade1+ 251, my a1+ 2 1|0, 3-3)
Then, the functional differential equation
{H(P)+A,,[C]+—z—--—}¢'[€] =0 (3-4)

is integrable, and contains the equation (3:1) as the special case in which
the surface C is reduced into the plane C, parallel to the zys—plane and
intersecting the time axis at & Further, if it is possible to obtain A, C]
such that the expression H(P)+ A4,[C] becomes a scalar, then our equa-
tion (3-4) is relativistically invariant and has a definite meaning without
referring to any Lorentz frame of reference.

We shall show that such a choice of A4[C] is in fact possible.

The relation (3-3) is first expressed in the form:

424401 N,
+[A4p[CL AL CTI+[A4pC], H(P)1+[H(P), 4,{C]]=0. (3-5)

Now, this equations 1s satisfied if we can fined A,[C] in such a way that

)

its “ rotation ”’ satisfies

34, [C) _ 34n[C)_ iy,
3 —LH(P), H(P)]

oCp 0C,
—_ " %3 8°Dn(LP—P) ' A //31)11(1 —P) 9,
=) {ead s T P —arany B0 @)

and further that the commutation relations

[4-[C], 4:{C]]=0 } (3-7)
[4.[C], H(P)]=0

are fulfilled.
The * rotation’
solution of

L

equation (3-6) can be satisfied when we can find the
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8 S. Kanesawa and S. TomonAGA

'3-42[;6"] —_— 4' )A Ag*rg- 2 BQDH(P— ), (3-6)

but this equation can be solved immediately by applying the theorem given
in II. (i.e. the formula (3-7)) We get, namely,

4,[C] =5 )jA A.¢*¢N'.?£1L(f:_QdF,, +K (3-8)

where V’y denotes the component of the unit vector normal to the surface
C at P and pointing to the future. The integration constant X is an ar-
bitrary operator independent of C.

We can carry out the integration on the right-hand side of (3-8).
This is done in the reference system whose space axes are tangent to C at
F. Denotlng the components of vectors in this system by barred suffixes,

and noting that 1n this system —621’%;——13) has the non-vanishing com-

ponent —zd(x—-x’ ) only in the 4-th direction, we obtain
!
j A48 N',_fﬂ"%’:—ID_dFP,: j A A 6 N5 (= )05 )dFr

or, denoting Ny the component of the unit vector normal to C at P and
pointing to the future, this can be written in the form

= [(Ae o) (A Ne Y8 90— )l P

because N; has values (0, 0, 0, /). On carrying out the integration this
gives

= - (4sN3)(4s Ny )99,
which, returning to the general coordinate system, gives rise to
= — (4N, )’¢*¢.
We obtain in this way
A[Cl=— (L) (WA yb$+ K.

The integration constant KX is now so chosen that Ap[C] vanishes when
C is reduced into a plane parallel to the ayz—plane. Thus we have to put
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On a Relativistically Invariant Formulation 9

K=— —-) A%,
so that we obtain the required solution of (3:6):
4,0 =- (LY ((mayss+ apél. (39
P - 47: ﬁ(: e‘‘ae 4, .

Now, we have to prove that this 4,[C] satisfies (3-7). The first re-
lation of (3:7) is satisfied, because the commutator on the right-hand side
contains only D(P—P') but no derivatives of D. This is obvious from the
fact that (3-9) contains no derivatives of the field quantities. The fact that
the second relation in (3-7) is also satisfied can be shown by the direct
calculation :

[4p[C], H(P)]=const. A{N,/A/') (3 ¢ —9*'$)
+ AL (§*¢ —gvg) 0 L2n(P=LT) |
ox
aD,(P—P) has
o
non-vanishing value only when X'=X’, where the faetor {...... }? vanishes.

In this way we can find the quantity A4,[C] to be added to H(P).
Denoting this sum by H[C]:

H,[C]=H(P)+4,[C] (3-10)

the right-hand side of this expression vanishes, because

we have
HACl=1{ (32 )43* ;’ﬁ %)
E)#sia+ ] G1D)

It is to be noted that the non-scalar term Ajg*¢ in AH(P) and the
non-scalar term Ajg*@ in Ap[C] just make up the scalar term A;¢*g, thus
giving the scalar quantity Hp[C].

The obtained scalar quantity H,[C] satisfies now the condition

o 0]

i1 A2 et gl e

which guarantees the integrability of the equation
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{HP[C] +T __}F[C] =0

HP[C]_~—-( ) (¢*6¢ a¢*) L (D)

0x,

LYt (Mady]

with

According to our construction of Hp[C], this equation is reduced into the
ordinary Schrédinger equation (3:1) when the surface Cis reduces into the
plane C; parallel to the xyz-plane and intersecting the time axis at 4
Further, the equation (II) has a definite meaning without referring to any
Lorentz frame of reference, so that this equation can be regarded as the
required generalization of the Schrédinger equation.

§4. Auxiliary condition.

As we have seen in II, the auxiliary condition in the case of the
quantum electrodynamics has the form

{aA¢+§j N Dz(P'—X)a'FP,} ?C]=0 (4-1)

where _/,(X) is the four-current density at the world point X. In our
case of the meson field the auxiliary condition has also the form of (4-1)
with the current density

J(= 1oL ). (42)

Notice that here the current density for the free meson field is to be used.
The suggested auxiliary condition for the scalar meson field will be thus

_ B[ CIP[C]=0
with (11D
i ; *
0C1 3 (G40 S =05

In order that (III) can really be used as the auxiliary condition, we
must prove its compatibility :
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X]

[H"[C] +—f'_ —3%; ’ :x,[C]]=O } (4-3)

[EAC] Ex[Cl)=0.

In order to verify the first relation of (4-3), we notice first

[#Lc1, g” o2 gy gf" ———-—3”*;:” )
Qie®

+ 2 a4 (4, M)N,}¢*¢—1”—-‘(;’Tj“”—) (4-4)

Bx,

Next, using the formula

(242, By

ox, ox,
—_ 3¢ a¢* / 8D (X"'X)
4”"7‘{(’5*”61:, a?;"') "ax "

11

_(" of" a¢*”¢\8Dn(X"—X) (¢*¢+¢w¢)w} (4-5)

II n n
Az,  ox, ox,

Ila

and

s, 2 ,,¢" ¢*'a¢] .

we calculate

[2ae), ()& Sy pior— 05,

ox,
) \OXy

Carrying out the integration over P” in the reference system whose space

axes are tangent to C at P, we find then

[HP[C‘], (%)J ggj_j Z ¢*”8x,,”)N " D P! — X’)JF,,,]
et 4 (a4, LG N )
Thus, the results (4-4) and (4-6) give rise to
[26[C), SxlCll=o3E g4+ 2)OPUL=X) (4.7

Now, applying the formula obtained in II:
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d ' AT . 0G,
y CJG Nyl = —c5C
and noting the equation of continuity for the current:
9 (3" 4_ 40 \_o
0%, \ 0, 9%,
we obtain
# 94 g — o 38" 4_gx 08 ) BD(P—X)
[ [ 8c,’ .-x,[C]]— (ax," ¢ 9%, ar, (4-8)

Summing up the results (4:7) and (4:8), we obtain the required rela-
tion :

[HP[C] +-_‘—_*C_, ux,[C]]

We must next prove the second relation of (4:3). We have first

94, 8A,] FD(X—-X)
[ax. ' ax) —dmific dox dx,0x,
a’DI(X—X')

a 2

=:4ﬂfiﬁ£

but the right-hand side of this equation vanishes because D;(X) satisfies
[0D;=0. Next, by applying (4:5) we see immediately that

[j( *”8—95”--—6‘6*” ’I)Ng’l-[)l(P,"X)dle s

f’ﬂf," Elz:”

J(gm 225 G ¢"')N;"’D1(P”’—X')dF,,,,,]=O.

ax n ax n

These two relations show that the required relation
[5LC], E2[CT]=0.

is really satisfied.

Having thus proved that our auxiliary condition is compatible, our
next task is to show that the condition (III) gives in fact the correct Max-
well equation when we go ever into the ordinary formulation. This pro-
blem, together with the problem of eliminating the auxiliary condition, will
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be given in another place.*

In this way we have shown that the perfectly relativistic: formulation
is possible also in the case of scalar (or pseudoscalar) meson field interact-
ing with the electromagnetic field despite ‘the difficulties mentioned in the
foregoing paragraphs. We can get over these difficulties by adding to the
interaction energy density A(P) a new term whose * rotation” cancels the
commutator of the energy density. It is a remarkable fact, that in this
way not only one obtains the quantity satisfying the condition of integrabi-
lity, but also non-scalar density () can be supplemented into the scalar
quantity. Thus the obtained quantity Hp[C] can be used as the characteri-

zing operator of the system to be used in the generalized Schrodinger

equation. This characteristic operator is not a point function of the space-
time but contains the direction cosines of the normal to the surface C, so
that it is rather a function of the variable surface-element in the space-time
world.

This last fact introduces a furthec}' restriction for the shape of dw used
in constructing the g.t.f. 7{G, C',]={[2 {1-——71.;!{,[6']4(0} over the restric-
tion introduced in I. Namely, it is ;equired that, not only dw should be
surrounded by two space-like surfaces, but the shape of this surfaces should
be such that the diffeience between directions of normals drawn at any two
points on these surfaces is infinitesimal of the same order as the volume
do. Thus our elementary regions must be of scale form flat in time-like
directions, so. that, according to our theory, the ‘world has, so to speak, a

laminar and not a granular structure,
(to be continued)
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