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Introduction 

1 

According to the general program proposed in the first paper, Koba, 
Tati and one of the present authors have given in the second paper a 
perfectly relativistic formulation of the quantum electrodynamics, which 
deals with the electromagnetic field interacting with the electron field. In 
this paper we shall apply the same method to the meson field interacting 
with the electromagnetic field. 

In doing this some generalizations of the treatment in I and II are 
necessary, because in I and II only such cases are considered in which the 
interaction energy of the fields under consideration is a scalar quantity whose 
densities at two different world points are commutable, provided that these 
points lie outside each other's light cones not only at a finite distance but 
also at an infinitesimal distance from each other. As stated in I. this is 
the case when the interaction part of the Lagrange function does not con
tain the time derivatives of the potentials describing the fields. However, 
in the cases of the meson fields, scalar as well as vectorial, interacting with 
electromagnetic field or the nucleon field this simplifying fact does not hold 
and the interaction energies are not a scalar. At the same time, the COffi

mutablility of the energy densities at- two world points breaks down when 
these points lie adjacent to each other. 

We shall show in this paper that, notwithstanding this complicating 

(1) S. Tomonagl1: Riken IhO (BuI. !peR.), 22 (194..'l) 545, Progr. Theor. Phys. 1 (1946). 27. 
This paper will be cited as I. 

(2) Z. Koba, T. Tati and S. Tomonaga: Progr. Theor. Phys. 2 (1947), 101. This paper wUi 
be cited as II. 
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2 ~. KANASAWA and S. TOMONAGA 

situation, we can still build up a theory similar to that described in I and 
II. 'vVe first treat the simple case of the scalar or the pseudoscaJar meson 
field interacting with the electromagnetic field, and then go over into the 
more complicated case of the vector or the pseudovector meson field. 

A. Case of Scalar or Pseudoscalar Meson Field. 

§ I. Density of interaction energy. Four-dimensional 
commutation relations between field quantities. 

Let L denote the Lagrange density of the total system. This consists 
of LR and L.u !, LR being the Lagrange density of the free electromagnetic 
field and L.~.v that of the scalar or the pseudoscalar meson field including the 
terms representing the interaction with the electromagnetic field. Thus: 

(1.1) 

In this paper, it is more convenient to lise the notations of the tensor cal
culus, not those of the vector calculus as we have done in II. Further we 
use the imaginary unit for the time coordinate: 

(1.2) 

Then we have 

) 
,u,1I=1,2, 3, 4 f 

(1.3) with 

where Ai' (i=l, 2, 3) denote the components of the vector potential, and 
A4=iAo, Ao being the scalar potential. We have further 

L.~Jl= __ . __ ~_{(a~* +je A",~*)(_a~ --f!-Av-rp)+x2rj)*¢} , (1.4) 
4iZ' a.t" v- fie a%v- lie 

¢ being the potential describing the scalar (or the pseudoscalar) meson· field. 
The Greek suffixes a, /1, p, II etc. take four values I, 2, 3 and 4, whereas 
the Latin suffixes run from 1 to 3 only. 

If now canonically conjugate quantities of Ap., ¢ and ¢* be denoted by 
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Ott a Rdativlsticatly lmltlriout F(ir11t1l1atioll 3 

A~, ~+ and ~*+ respectively, we have 

A~ = aLR = _ -~~p. 
a aAp. 4n 

aX4 

fj+= aL.'i1l =-.~(~* +~A4j*) 
a~ 4n ax. fie 

ax. 
(1 .. '5) 

¢*+= aL.'1: = _~(_~_ it Alf) 
a~ 4n a..t.. fie • 

ax. 
The canonical energy density of the system is obtained by the usual pro-
cedure: 

H=A~ aAp.+~+}~ +~*~*+-L 
a..t.. aX4 aX4 

(1.6) 

=HIl+H.~M. 

In (1.6) the first term If,l is the energy density (or the electromagnetic 
field alone, and the second term HaM is that o( the meson field including 
the interaction terms with the eleetromagnetic field. As in the following 
we make no use of HR , we give here only the explicit expression for H.~M' 

It is defined by 

(1.7) 

This H.~M can be separated into two parts: 
o 

HaM = H.~Jl + u,nt (1.8) 

with 

(1.9) 

and 

H. =-~[(~){A (¢*~_ ap* ¢) 
1m 4;r "Ae j ax~ aXl. 

-4;rA4(~*¢*+ -¢+¢)} -(~: )Af¢*I>]. (1.10) 
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4 S. KANASAWA and S. TOMONAGA 

o 
The first term H.SJf in (1·8) is independent of the electromagnetic potentials 
and represents the energy density of the free meson field, while the second 

term I-l;nt contains the mesonic as well as the electromagnetic potentials and 
represents density of the interaction energy between these two fields. The 
expression (1.9) and (1.10) are obtained by the usual procedure by substi
tuting (1.5) into (1.7). 

According to our general schem developed in I, we now transform the 
field quantities by means of the unitary operator 

(1.11) 

Then the transformed quantities. satisfy the field equations for the free fields. 

Especially ~*+ and ¢+ in Hint can be replaced by - 41 aa~ and - 41 °afi* 
1Z' ~4 'IT: %. 

respectively. Thus we have 

H. -~{(~)A (,,*~- a¢* ,,)_(~)2A';J.*J.} (1.12) 
1!Jt- 4'IT: -lie ,. r a%,. a%/ l£e -er r • 

Since, in this way. the field quantities satisfy the field equations for 
the free fields. we can obtain the four-dimentional commutation relations 
between them: 

[A .. (X) , A~(X')]= -41T:t-lie a .. ,D1(X -X')} 
[~(X), ¢*(X')= -4'IT:i1ic Du(X-A'"I) 

[¢(X), ¢(X')]=[¢*(X). ¢*(X')J=O, 

(1) 

where Dl and Dn are the so-called four-dimensional delta-functions belong
ing respectively to the electromagnetic field and the mesonic field. 

Observing (1.12). we find that the interaction energy density is not a 
scalar. Although the first term in (1.12) is a scalar, the second term is 
not, since in the summation A;=Ai+Ai,+Ai the fourth component of the 
potential is abscent. This situation prevent us from applying directly the 
method developed in I. As we shall show in the next paragraph we have 
beside this a further difficulty: our Hint does not satisfy [Hint(X). Hin'(X')] 
=0, which would be necessary for the integrability of the generalized 
Schrodinger equation. 
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On a Relativistically Invariant Formulation 

§ 2. Commutation relation between energy densities 
at two difi"erent world points. 

5 

We calculate in this paragraph the cOP'mutator [H;nt(X), H;.iA ..... )]. 
For simplicity, we denote H;,iX) by H, H;ut(X') by H', A(X) by A, 
A(A") by A' etc. Then we have 

We now calculate each commutator on the right-hand side of (2.1). Then, 
we see first that the fourth term on the right-hand side contains D(X-X') 
but not its derivatives. As we are interested only in such pairs of points 
one of which is space-like with respect to the other, such terms containing 
no derivatives of D(X-.X') can be replaced by O. Next we see that the 
second and the third terms give rise to the term of the form 

-4tte{A",A~2(~*~' -~*'~)-At.' AH~*'~-~*~')} EJDn~X-.X') , 
x'" 

which vanishes, because EJDn(;:-X') has non-vanishing value only when 
x'" 

X=X' (provided that X and X' are a space-like pair) where the factor 
{ ...... } vanishes. 

In this way only the first term on the right-hand side of (2.1) gives 
a non -vanishing contribution: 
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6 S. KANESAWA and S. TOMONAGA 

A though the right-hand side of (2.2) vanishes for the pair of points X 
and X' when thcy lie at a finite' distance from each other and outside each
other's light cones, it has a non-vanishing valuc when they are adjacent to 

each other. Namely, the function ~~L!.!!~!f=,X') = _ a2DJ_rf..1f' -X) has a 
a.;J:·eJax~ a.l-"eJ ax~ 

non-vanishing value when X' is adjacent to .X: 
S· a2Dn(X-X') h h . h' I I h X lnce ------------ as t us a non-vams lllg va ue on y w en 

()x .. ox~' 
and X are adjacent to each other, (2.2) can be also expressed in the form: 

[D, H']= ___ Je2 {AeJA~~*~02DIl(X-X/) 
4dic . o:t'eJox/ 

-A' A 1J.*IJ.,(J2DJJ(X' -X)} (2.3) eJ , '!1 '!1 ~,~ • 
d..t. .. ox~ 

This form is more convenient than (2.2) for our latter purpose. 

§ 3. Deri vation of the generalized 
Schrodinger equation. 

As stated in the preceding paragraph, our energy density H does not 
satisfy [H, H']=O. But this does in no way prevent that the !r -vector, 
transformed by means of the unitary operator U in (1.11), satisfies the 

(3.1) 

The situation is only so far complicated that we can not go over from 
(3.1) immediately into 

(3.2) 

because this necessitates the condition [H(P), H(PI)]=O. 
In such a situation we proceed in the following manner: we introduce 

the operator Ax[ C], a function of world point X in one hand* and a func-

* Similarly as in II, .r, X', XI/, ..... . denote arbitrary world point.s and P, P', plI, ...... 
such world paints lying on C. We use for both kindS of points the same letters xI'-' xiI£> 
xl' 1'-, ...... to denote their coordinate6, but thi6 makes no confusion in the following eonsi
aeration. 
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0" a Relativistically l'lVariallt Formu!atio1t 7 

tional of the variable surface C on the other, such that it vanishes, in the 
first place, when C is reduced into a plane parallel to the xyz-plane, and 
it satisfies, in the second place, 

Then, the functional differential equation 

(3.4) 

is integrable, and contains the equation (3.1) as the special case in which 
the surface C is reduced into the plane C, parallel to the .tyz-plane and 
intersecting the time axis at t. Further, if it is possible to obtain A,J:{C] 
such that the expression H(P) + Ap[C] becomes a scalar, then our equa
tion (3.4) is relativistically invariant and has a definite meaning without 
referring to any Lorentz frame of reference. 

We shall show that such a choice of A.x[C] is in fact possible. 
The relation (3.3) is first expressed in the form: 

-!-{ t1Al'[C] aApI[C]} + [H(P), R(P)] 
t aCpI bCl' 

+ [Al'I[C],Al'[C]] + [Al'I[C], H(P)J+[H(P), Ap[C]]=O. (3.5) 

Now, this equations 15 satisfied if we can filled Ap[C] in such a way that 
its "rotation" satisfies 

and further that the commutation relations 

are fulfilled. 

[ApI[C], Ap[C]]=O} 

[AI'I[Cj, H(P)]=O 
(3.7) 

The "rotation II equation (3.6) Catl be satisfied when we can find the 
solution of 
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8 S. KANESAWA and S. TOMONAGA 

"Ap[el = __ C_(~)2A.A~~*~ ffDu(P-P'), (3.6') 
3CP I 471' lie . ox.'iJxr,' 

but this equation can be solved immediately by applying the theorem given 
in II. (i.e. the formula (3.7» We get, namely, 

Ap[C] = !( ~)JA .. A~~*t"N/ 'iJDn<;';:P') dFI',+K (3·8) 
G 

where N'~ denotes the component of the unit vector normal to the surface 
C at P and pointing to the future. The integration constant K is an ar
bitrary operator independent of C. 

'We can carry out the integration on the right-hand side of (3.8). 
1his is done in the reference system whose space axes are tangent to e at 
P. DenotIng the components of vectors in this system by barred suffixes, 

d ' ha' h' 'iJDu(P-P') h h ' h' an notmg t t 10 t IS system 8 as t e non-vams 109 com-
... ... x .. 

ponent -i~(x-x') only in the 4-th direction, we obtain 

JA.A~~"~N'~ ODJJ<:;~P') dFpl= JA4Aif~*~~-( -i)a(:-7)dFp I, . " 
or, denoting N;;: the component of the unit vector normal to C at P and 
pointing to the future, this can be written in the form 

= - JSA .. ~V .. )(A~NiI')~~!6b(;-~)dFpI' 

because N;;: has values (0, 0, 0, i). On carrying out the integration this 
gives 

which, returning to the general coordinate system, gives rise to 

We obtain in this way 

The integration constant K is now so chosen that Ap[C] vanishes when 
C is reduced into a plane parallel to the ~yz-plane, Thus we have to put 
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which, returning to the general coordinate system, gives rise to 

We obtain in this way 

The integration constant K is now so chosen that Ap[C] vanishes when 
C is reduced into a plane parallel to the ~yz-plane, Thus we have to put 
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so that we obtain the required solution of (3.6') : 

(3.9) 

Now, we have to prove that this Ap[C] satisfies (3.7). The firstre
lation of (3.7) is satisfied, because the commutator on the right-hand side 
contains only D(P-P) but no derivatives of D. This is obvious from the 
fact that (3.9) contains no derivatives of the field quantities. The fact that 
the second relation in (3.7) is also satisfied can be shown by the direct 
calculation : 

[Ap,[C], H(P)]=const. Ar.{N.'A./)2(~ ~' _~*/~) 

+ Al(~*~' _~*/~)} aDn<;-pI) , 
~r. 

the right-hand side of this expression vanishes, because aDn(p-p') has 
a~r. 

non-vanishing value only when X- X', where the faetor { ...... } vanishes. 
In this way we can find the quantity Ap[C] to be added to H(P). 

Denoting this sum by Hp[ C] : 

(3.10) 

we have 

Hp[ C]= ~r(~)A,,(~* ~_ a~*~) 
4n' l' 1i:c ax" ax" -( ~ r~*~{ A; + (N"A,,)'}]' (3.11) 

It is to be noted that the non-scalar term A~*~ in H(P) anJ the 
non-scalar term A~*~ in Ap[CJ just make up the scalar term A!,*~, thus 
giving the scalar quantity n;,[ C]. 

The obtained scalar quantity Hp[C] satisfies now the condition 

(3.12) 

which guarantees the integrability of the equation 
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10 S. KANESAWA and S. TOMONAGA 

with 

According to our construction of HP( C], this equation is reduced into the 
ordinary Schrodinger equation (3.1) when the surface C is reduces into the 
plane C, parallel to the xyz-plane and intersecting the time axis at t. 
Further, the equation (II) has a definite meaning without referring to any 
Lorentz frame of reference, so that this equation can be regarded as the 
required generalization of the Schr6dinger equation. 

§ 4. Auxiliary condition. 

As we have seen in II, the auxiliary condition in the case of the 
quantum electrodynamics has the form 

{~~; + Jf"N1"D1(PI_X)dFp ,} W[C]=O (4.1) 
c 

where J.(X) is the four-current density at the world point X. In our 
case of the meson field the auxiliary condition has also the form of (4.1) 
with the current density 

J.(X) = ~(~¢-¢*-o¢). 
fie ax. ax. 

(4.2) 

Notice that here the current density for the (ree meson field is to be used. 
The suggested auxiliary condition (or the scalar meson field will be thus 

with 

In order that (III) can really be used as the auxiliary condition, we 
must prove its compatibility: 
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On a Relativisticatl;! blvariant FOrtludation ] 1 

[Hp[. C] ++ ~~p' 8 z ,[C]]=0} (4.3) 
[8.z[C], 8 Z1[C]]=0. 

In order to verify the first relation of (4.3), we notice first 

Next, using the formula 

and 

.1.*.1. _O'fJ_.l.II _.1.'1< '_O'fJ_ -0 [ 
-;M *" -;Mil ] 

" ", (J%,!'" " (J%,!' - , 

we calculate 

[Hp[C], ( ~ )~(~:::~II_~*" a~::,)NI'''Dl(PII-X)dFp,,] 
Carrying out the integration over P" in the reference system whose space 
axes are tangent to C at P", we find then 

[Hp[C], (Ii: )J(~::;II -~*"a~~:,)NI''' D1(P" -X')dFp,,] 
c 

= _ :;{A.+(A~)N.} aDI(~~X') (4.6) 

Thus, the results (4.4) and (4.6) give rise to 

Now, applying the formula obtained in II: 
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12 S. KANESAWA and S. TOMONAGA 

and noting the equation of continuity for the current: 

we obtain 

[ 1i.~ E'x,[CJ]=-e( a{l* ~_~*~) aD1(P-J!l---.. (4.8) 
i ~Cp' ax... ax... ax ... 

Summing up the results (4.7) and (4.8), we obtain the required rela
tion: 

We must next prove the second relation of (4.3). We have first 

[ aA,. aA/] = _47rific~a2DI(X -X') 
aot',.' ax/ d ax,.(Jx)..' 

-4 ... ·,k f1DI(X-X') 
- •• me ax! ' 

but the right-hand side of this equation vanishes because D1(X) satisfies 
DD1=0. Next; by applying (4.5) we see immediately that 

[J(.!. *" a~" - a~*" )''')N. "n (P' - X)dF '/I ':lo" ':lo 11'1' 01 1 PII. 
C7X,. C7X .. 

C J(.!.*'" a{l'." - a~*''' .!.III)N "'D (P'" - X') JF, .] =0 "., ~ '" ~ ",'I' ).. I ,~. pm • 
. C7X).. C7X).. 

" 
These two relations show that the required relation 

[E' x[ C]. E' z,[ C]] =0. 

is really satisfied. 
Having thus proved that our auxiliary condition is compatible. our 

next task is to show that the condition (III) gives in fact the correct Max
wellequatioll when we go ever into the ordinary formulation. This pro
bleml together with the problem of eliminating the auxiliary condition. will 
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be given in another place. * 
In this way we have shown that the perfectly relativistic formulation 

is possible also in the case of scalar (or pseudoscatar) meson field interact
ing with the electromagnetic field despite the difficulties mentioned in the 
foregoing paragraphs. We can get over these difficulties by adding to the 
interaction energy density H(P) a new term whose II rotation" cancels the 
commutator of the energy density. It is a remarkable fact, that in this 
way not only one obtains the quantity satisfying the condition of integrabi
lity. but also non-scalar density H(P) can be supplemented into the scalar 
quantity. Thus the obtained quantity Hp[C] can be used as the characteri
_zing operator of the system to be used in the generalized Schrodinger 
equation. This characteristic operator is not. a point function of the space
time but contains the direction cosines of the normal to the surface C, so 
that it is rat·her a function of the variable surface-element in the space-time 
world. 

This last fact introduces a further restriction for the shape of dw used 

in constructing the g.t.f. T(C;. c;.J=JI{I --!.--Hp[CJdw} over the restric-
0, 't 

tion introduced in I. Namely, it is required that, not only dcu should be 
surrounded by two space-like surfaces, but the shape of this surfaces should 
be such that the diffelence between directions of normals drawn at any two 
points on these surfaces is infinitesimal of the same order as the volume 
dcu. Thus our elementary regions must be of scale form flat in time-like 
directions, so. that. according to our theory, the world has, so to speak, a 
laminar and not a granular structure. 

(to be continued) 
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