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ON QUANTUM MECHANICS

M. BORN AND P. JORDAN

The recently published theoretical approach of Heisenberg is here developed into
a systematic theory of quantum mechanics (in the first place for systems having
one degree of freedom) with the aid of mathematical matrix methods. After a
brief survey of the latter, the mechanical equations of motion are derived from
a variational principle and it is shown that using Heisenberg’s quantum con-

dition, the principle of energy conmservation and Bohr’s frequency condition
follow from the mechanical equations. Using the anharmonic oscillator as

example, the question of uniqueness of the solution and of the significance of
the phases of the partial vibrations is raised. The paper concludes with an
attempt to incorporate electromagnetic field laws into the new theory.

Introduction

The theoretical approach of Heisenberg! recently published in this
Journal, which aimed at setting up a new kinematical and mechanical
formalism in conformity with the basic requirements of quantum
theory, appears to us of considerable potential significance. It repre-
sents an attempt to render justice to the new facts by setting up a
new and really suitable conceptual system instead of adapting the
customary conceptions in a more or less artificial and forced manner.
The physical reasoning which led Heisenberg to this development has
been so clearly described by him that any supplementary remarks
appear superfluous. But, as he himself indicates, in its formal, mathe-
matical aspects his approach is but in its initial stages. His hypotheses
have been applied only to simple examples without being fully carried
through to a generalized theory. Having been in an advantageous
Position to familiarize ourselves with his ideas throughout their
formative stages, we now strive (since his investigations have been

Editor's mote. This paper was published as Zs. f. Phys. 34 (1925) 858-888. Chapter
4 (pp. 883-888) of the original paper is not reproduced here.
'w, Heisenberg, Zs. f. Phys. 33 (1925) 879.
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278 M. BORN AND P. JORDAN 13

concluded) to clarify the mathematically formal content of his ap-
proach and present some of our results here. These indicate that it jg

in fact possible, starting with the basic premises given by Heisenberg,
to build up a closed mathematical theory of quantum mechanicg
which displays strikingly close analogies with classical mechanics, byt
at the same time preserves the characteristic features of quantum

phenomena.
In this we at first confine ourselves, like Heisenberg, to systemsg
Vi = assica

standpoint — pertodic. We shall in the continuation of this publication
concern ourselves with the generalization of the mathematical theory
to systems having an arbitrary number of degrees of freedom, as also
to aperiodic motion. A noteworthy generalization of Heisenberg’s
approach lies in our confining ourselves neither to treatment of
nonrelativistic mechanics nor to calculations involving Cartesian

systems of coordinates. The only restriction which we impose upon

1€ CNOICE O COOTaInatesS 1S O DaASE€ 0OU COIISIAETd OI1IS UPOI. OYaAL107
coordinates, which in classical theory are periodic functions of time.
Admittedly, in some instances it might be more reasonable to employ
other coordinates: for example, in the case of a rotating body to
introduce the angle of rotation ¢, which becomes a linear function of
time. Heisenberg also proceeded thus in his treatment of the rotator;
however, it remains undecided whether the approach applied there
can be justified from the standpoint of a consistent quantum me-
chanics.

The mathematical basis of Heisenberg’s treatment is the law of
multiplication of quantum-theoretical quantities, which he derived
from an ingenious consideration of correspondence arguments. The
development of his formalism, which we give here, is based upon the
fact that this rule of multiplication is none other than the well-known
mathematical rule of matrix multiplication. The infinite square array
(with discrete or continuous indices) which appears at the start of the
next section, termed a matrix, is a representation of a physical quantity
which is given in classical theory as a function of time. The mathe-
matical method of treatment inherent in the new quantum mechanics
is thereby characterized through the employment of matrix analysts
in place of the usual number analysis.

Using this method, we have attempted to tackle some of the
simplest problems in mechanics and electrodynamics. A variation®
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rinciple, derived from correspondence considerations, yields equations
of motion for the most general Hamilton function which are in closest
alna_logy with the classical canonical equations. The quantum con-
dition conjoined with one of the relations which proceed from the
equations of motion permits a simple matrix notation. With the aid
of this, one can prove the general validity of the law of conservation of
energy and the Bohr frequency relation in the sense conjectured by
Heisenberg: this proof could not be carried through in its entirety by
later return in more detail to one of these examples in order to derive
a basis for consideration of the part played by the phases of the
partial vibrations in the new theory. We show finally that the basic
Jaws of the electromagnetic field in a vacuum can readily be incorpo-
rated and we furnish substantiation for the assumption made by
Heisenberg that the squares of the absolute values of the elements in a
matrix representing the electrical moment of an atom provide a

cor ] . babilities.

CHAPTER 1. MATRIX CALCULATION

1. Elementary operations. Functions

We consider square infinite matrices,! which we shall denote by
heavy type to distinguish them from ordinary quantities which will
throughout be in light type,

Equality of two matrices is defined as equality of corresponding
Components:

a=>b means a(nm)= b(nm). (1)
Matrix addition is defined as addition of corresponding components:

a=>b+ c means a(nm) = b(nm) + c(nm). (2)

! Further details of matrix algebra can be found, e.g., in M. Bécher, Einfiihrung
In die hohere Algebra (translated from the English by Hans Beck; Teubner,
Le‘PZIg, 1910) § 22-25; also in R. Courant and D. Hilbert, Methoden der mathe-
Matischen Physik 1 (Springer, Berlin, 1924) Chapter I.
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Matrix multiplication is defined by the rule ‘rows times columng’,
familiar from the theory of determinants:

a = bc means a(nm) = kgo b(nk) c(km). (3)

Powers are defined by repeated multiplication. The associative ryle
applies to multiplication and the distributive rule to combined ag-
dition and multiplication:

(ab)c = a(bc); (4)
a(b + ¢) = ab + ac. (5)

However, the commutative rule does nof hold for multiplication: it
is not in general correct to set ab=ba. If a and b do satisfy this relation,
they are said to commute.

The unit matrix defined by

(

Onm = O for =n % m,
1 = (6nm), " (6)
67“; — 1
has the property
al = la = a. (6a)
The reciprocal matrix to a, namely a-1, is defined byl
a-la = aa-1 = 1. (7)

As mean value of a matrix a we denote that matrix whose diagonal
elements are the same as those of a whereas all other elements vanish:

a = (Onma(nn)). (8)

The sum of these diagonal elements will be termed the diagonal sum
of the matrix a and written as D(a), viz.
D(a) = X a(nn). 9)

From (3) it is easy to prove that if the diagonal sum of a product
y=x1X2---Xm be finite, then it is unchanged by cyclic rearrangement

1 Asis known, a-1is uniquely defined by (7) for finite square matrices when the
determinant 4 of the matrix a is non-zero. If 4=0 there is no matr*
reciprocal to a.
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of the factors:

Clearly, it suffices to establish the validity of this rule for ¢wo factors.
If the elements of the matrices a and b are functions of a parameter ¢,

then
d

S a(nk) b(km) = 3 {d(nk) b(km) + a(nk) b(km)},

K

(o
1S

or from the definition (3):
d (ab) = ab + ab 11
= . ( )

Repeated application of (11) gives

d

—&t—(xlxz---x,,) = X1X3 -+ Xp + XiXg -+ Xp + ... + XiXg -+ Xp. (1T

From the definitions (2) and (3) we can define functions of matrices.
To begin with, we consider as the most general function of this type,
f(x1, x2, ... Xm), one which can formally be represented as a sum of a
finite or infinite number of products of powers of the arguments xj
weighted by numerical coefficients.

Through the equations

............ (12)
fn()’l, cee Yn, X1, ... Xn) —

we can then also define functions y;(x1, ... x5); namely, in order to
obtain functions y; having the above form and satisfying equation
(12), the y; need only be set in form of a series in increasing power
Products of the xx and the coefficients determined through substi-
tution in (12). It can be seen that one will always derive as many
€quations as there are unknowns. Naturally, the number of equations
and unknowns exceeds that which would ensue from applying the
Mmethod of undetermined coefficients in the normal type of analysis
incorporating commutative multiplication. In each of the equations
(12), upon substituting the series for the y; and gathering together
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like terms one obtains not only a sum term C’'xix2 but also a tery,
C”x2x1 and thereby has to bring both C’ and C” to vanish (e.g., not
only C’'+C"). This is, however, made possible by the fact that in the
expansion of each of the y;, two terms x1x2 and xgx; appear, with tw,
available coefficients.

2. Symbolic differentiation

At this stage we have to examine in detail the process of differentiation
of a matrix function, which will later be employed frequently in calcu-
lation. One should at the outset note that only in a few respects does
this process display similarity to that of differentiation in ordinary
analysis. For example, the rules for differentiation of a product or of a
function of a function here no longer apply in general. Only if all the
matrices which occur commute with one another can one apply all

~ therules of normal analysis to this differentiation.

Suppose
y= 1II xi, = x;.x, -+ x,. (13)
m=1
We define
oy

8
o= It I x, I (14)

an r m=r+1 m=1 akk = 1.

4 m=r—1 {5}]; =0 for g #k&,
X1

This rule may be expressed as follows: In the given product, one
regards all factors as written out individually (e.g., not as x3xZ, but as
x1x1X1X2Xg) ; one then picks out any factor x; and builds the product
of all the factors which follow this and which precede (in this sequence).
The sum of all such expressions is the differential coefficient of the
product with respect to this xy.

The procedure may be illustrated by some examples:

d
y — x‘n, _1_ o nxn—l
dx
— x"x™ @y . xn—lxm + xn—2xmx __|_ + xmxn—-l
Yy = X1Xg, ‘”—axl——l 2 1 XeX1 T ... 2 X1
2 o 2
Yy = XjX2X1Xg, —— == X1X2X1X3 -+ X2X1X3X1 -+ X3XjX2.

3X1
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If we further stipulate that

0 0 0
ity o1, 9 (15)

OXp OX 297

then the derivative dy/ox is defined for the most general analytical
functionsy.

With the above definitions, together with that of the diagonal sum
(9), there follows the relation

oD(y) oy
6xk(nm) OXp

l
3
2

(16)

on the right-hand side of which stands the mn-component of the
matrix dy/oxx. This relation can also be used to define the derivative

i 16), it obviously suff 1

function y having the form (13). From (14) and (3) it follows that

3)’ 8 8 r—1
Ixe (mn) = X 6,2 II #%,(totp+1) II %,(vp7p+1); (17)
Xk r=1 T p=r+1 p=1
Tr+1 = Mm, Ts+1 = T1, Tr = N.
On the other hand, from (3) and (9) ensues
aD(y) 8 r—1 8 ,
———— =X 0 X II %,(vptp+1) II %,(te%p+1); (17°)
8xk(mn) r=1 T p=1 p=r+1
T1 = Ts+1, Tr = N, Tr+1 = M.

Comparison of (17) with (17’) yields (16).

We here pick out a fact which will later assume importance and
which can be deduced from the definition (14): the partial derivatives
of a product are tnvariant with respect to cyclic rearrangement of the
factors. Because of (16) this can also be inferred from (10).

To conclude this introductory section, some additional description
Is devoted to functions g(pq) of fwo variables. For

. y = p’q" (18)
1t follows from (14) that
ay 8 8y r—1

-1
_r s~1-lgrpl —_— r—1—jpsqd. 18')
p 2 PP % j=21 qr-1-9p%q (
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The most general function g(pq) to be considered is to be representeq
in accordance with § 1 by a linear aggregate of terms

k

z = [T (p%qms). (19)
j=1
With the abbreviation
k -1
Pr= TI (p%q7) II (P%4"s), (20)

i=1+1 =1

one can write the derivatives as

az k 8—1 1
B el
=1 m=
_ ' (21)
az k r—1 )
=33 gri=l=mpps,gm.
aq l:‘l m‘=‘0 ! J

From these equations we find an important consequence. We consider
the matrices
0z 0z 0z 0z
di=q———4q, dg=p— ———p. (22)
9q  oq o o

From (21) we have

k
di= 3 (qPipt — Piprigry),

k
dz e Z (Pstqupl —_ quPlpsl),
=1

and thus it follows that

k
di + dg = X (p*q"Py — Pipiiqy).
=1

Herein the second member of each term cancels the first member of
the following, and the first and last member of the overall sum also
cancel, so that

dy + dz = 0. (23)

Because of its linear character in z, this relation holds not only for
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expreWﬁWssions Z havin 0] , but'indeed for arbitrary analytical

functions g(pq).!
In concluding this brief survey of matrix analysis, we establish the

following rule: Every matrix equation

F(x1, xg, ... xp) =0

yemains valid if in all the matrices x5 one and the same permutation of all
rows and columns 1s undertaken. To this end, it suffices to show that
for two matrices a, b which thereby become transposed to a’, b’, the
following invariance conditions apply:

a + b’ = (a + b), a’b’ = (ab)’,

wherein the right-hand sides denote those matrices which are formed
from a-+b and ab respectively by such an interchange.

We set forth this prootf by replacing the procedure of permutation
by that of multiplication with a suitable matrix.2
We write a permutation as

(o 1 23 )_(n)
kokikaks...]  \kn/’

and to this we assign a permutation matrix,

p= (plnm)),  plnm) =

1 when m = &,
O otherwise.

The transposed matrix to p is
= Bom), o)~ |

1 when n = &,
0 otherwise.

1 More generally, for functions of # variables, one has

a

c 0
Z(x,- g4 x,)=O.
y OXy

ox,

? The method of proof adopted here possesses the merit of revealing the close
Connection of permutations with an important class of more general transfor-
Mations of matrices. The validity of the rule in question can however also be
€stablished directly on noting that in the definitions of equality, as also of addition
and multiplication of matrices, no use was made of order relationships between
the rows or the columns.
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On multiplying the two together, one has

pp = (% p(nk) p(km)) = (0nm) = 1,

since the two factors p(nk) and p(km) differ from zero simultaneously
only if k=~Fkn,="Fy, i.e., when n=m. Hence p is reciprocal to p:

p=pt.

If now a be any given matrix, then
pa = (5 p(n#) albm)) = (alkn, )

is a matrix which arises from the permutation (j;,) of the rows of q,
and equivalently

ap~! = (% a(nk) p(km)) = (a(n, km))

is the matrix arising from permutation of the columns of a. One and
the same permutation applied both to the rows and the columns of a
thus yields the matrix

a’ = pap~1.
Thence follows directly
a’ + b’ = p(a 4 b)p~t = (a + b)’,
a’b’ = pabp—1 = (ab)’,

which proves our original contention.
It is thus apparent that from matrix equations one can never
determine any given sequence or order of rank of the matrix elements.
Moreover, it is evident that a much more general rule applies,
namely that every matrix equation is invariant with respect to
transformations of the type

a’ = bab™1,

where b denotes an arbitrary matrix. We shall see later that this does
not necessarily always apply to matrix differential equations.
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— CHAPTER 2. DYNAMIC

The dynamic system is to be described by the spatial coordinate q
and the momentum p, these being represented by matrices

wm

q= (q(nm)e2niv(nm)t), p = (p(nm)e%ziv(nm)t). (24)

Here the »(nm) denote the quantum-theoretical frequencies associated

n and m. The matrices (24) are to be Hermitian, e.g., on transpo-
sition of the matrices, each element is to go over into its complex
conjugate value, a condition which should apply for all real . We
thus have

q(nm) q(mn) = |q(nm)|? (25)
and

vinm) = — y(mn). (26)

If q be a Cartesian coordinate, then the expression (25) is a measure
of the probabilitiesl of the transitions nem.
Further, we shall require that

(i) + »(kl) + »() = O. (27)

This can be expressed together with (26) in the following manner:
there exist quantities W, such that

wmm) = Wy — W (28)

From this, with equations (2), (3), it follows that a function g(pq)
invariably again takes on the form

g = ( g (nm) e2niv(nm) t) (29)

and the matrix (g(nm)) therein results from identically the same
Process applied to the matrices (g(nm)), (p(nm)) as was employed
to find g from q, p. For this reason we can henceforth abandon the
representation (24) in favour of the shorter notation

q = (gnm)),  p= (p(nm)). (30)

For the time derivative of the matrix g= (g(nm)), recalling to mind

! In this connection see § 8.
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(24) or (29), we obtain the matrix

If v(nm)#0 when nsm, a condition which we wish to assume,
then the formula g=0 denotes that g is a diagonal matrix with
g(nm)==~0nmg(nn).

A matrix differential equation g=a is invariant with respect to
that process in which the same permutation is carried out on rows

ana-columns ot aill the matrices and also upao e-numb
order to realize this, consider the diagonal matrix
W - (6an‘n).
Then
Wy = (X onxWng(km)) = (Wag(nm)),
k
W= nk)OxmWi) = (Wng(nm)),
ke
. 27 2n1
g =——(Wn—Wng(nm)) = —— (Wg — gW).

If now p be a permutation matrix, then the transform of W,
W, = PWP_I = (anka‘nk)

is the diagonal matrix with the permuted W, along the diagonal.
Thence one has
: 1 .
pgpt = —th— (Wg' — gW) =47,
where g’=pgp~! and ¢’ denotes the time derivative of g’ constructed
in accordance with the rule (31) with permuted Wj,.

The rows and columns of g thus experience the same permutation
as those of g, and hence our contention is vindicated.

It is to be noted that a corresponding rule does ot apply to arbitrary
transformations of the form a’=bab-1 since for these W’ is no longer
a diagonal matrix. Despite this difficulty, a thorough study of these
general transformations would seem to be called for, since it offers
promise of insight into the deeper connections intrinsic to this new
theory: we shall later revert to this point.1

1 Cf. the continuation of this work, to be published forthwith.
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In the case of a Hamilton function having the form

1
—_ N2
H= o P + U(q)

we shall assume, as did Heisenberg, that the equations of motion are
just of the same form as in classical theory, so that using the notation
of § 2 we can write:

(32)

.
[TOW U U CSPDOINGeE - 0 c1era OIS 0 v, mMore gene NIAY,

to elucidate the equations of motion belonging to an arbitrary Hamil-

ton function H(pq). This is required from the standpoint of relativistic
mechanics and in particular for the treatment of electron motion
under the influence of magnetic fields. For in this latter case, the
function H cannot in a Cartesian coordinate system any longer be
represented by the sum of two functions of which one depends only
on the momenta and the other on the coordinates.

Classically, equations of motion can be derived from the action
principle

j lL dt = ftl{pq' — H(pq)} dt = extremum. (33)
b to

If we now envisage the Fourier expansion of L substituted in (33)
and the time interval ¢y —#p taken sufficiently large, we find that only
the constant term of L supplies a contribution to the integral. The
form which the action principle thence acquires suggests the following
translation into quantum mechanics:

The diagonal sum D(L)=3L(kk) is to be made an extremum:

k

D(L) = D(pq — H(pq)) = extremum, (34)

namely, by suitable choice of p and q, with v(nm) kept fixed.
Thus, by setting the derivatives of D(L) with respect to the elements
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of p and q equal to zero, one obtains the equations of motion

2niv(nm) q(nm) oDH)
n nm) =
w ( op(mn) ’
, oD(H)
2niv(mn) p(mn) = .
ogq(mn)
From (26), (31) and (16) one observes that these equations of motion
—can always be written in canonical form,
- oH
q - ap » (
35
b — oH )
oq |

For the quantization condition, Heisenberg employed a relation
—proposed by Thomas!and Kuhn.2 The equation ———

1/y

J= M’d4=0f1>4dt

of ‘classical’ quantum theory can, on introducing the Fourier ex-
pansions of p and g,

? — E ptezﬂiﬂ‘tt’ q = E qtezuiﬂt’

T=—00 7= —00

be transformed into

. 2 0
| =27 3 v (@b (36)
If therein one has p=mg, one can express the p, in terms of ¢, and
thence obtain that classical equation which on transformation into 2
difference equation according to the principle of correspondence
yields the formula of Thomas and Kuhn. Since here the assumption
that p=mq should be avoided, we are obliged to translate equation
(36) directly into a difference equation.

1 W. Thomas, Naturwiss. 13 (1925) 627.
2 W. Kuhn, Zs. f. Phys. 33 (1925) 408.
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The following expressions should correspond:

o

T=§_°° T a; (qu_f) with
1 E g(n + 7, n)p(n, n + v) — q(n, n — )p(n — 7, n));

b 1="oo

where in the right-hand expression those g(nm), p(nm) which take

on a negative index are to be set equal to zero. In this way we obtain

the quantization condition corresponding to (36) as

h
S (p(k)g(kn) — glnk)plin) = ——. 7)
k 1
This is a system of infinitely many equations, namely one for each
value of .
In particular, for p=mq this yields

h
8n2m ’

Z v(kn)lg(nk)|? =

which, as may easily be verified, agrees with Heisenberg’s form of the
quantization condition, or with the Thomas-Kuhn equation. The
formula (37) has to be regarded as the appropriate generalization of
this equation.

Incidentally one sees from (37) that the diagonal sum D(pq) neces-
sarily becomes infinite. For otherwise one would have D(pq) —D(qp) =0
from (10), whereas (37) leads to D(pq) —D(qp)=oc. Thus the matrices
under consideration are never finite.l

4. Consequences. Energy-conservation and frequency laws

The content of the preceding paragraphs furnishes the basic rules of
the new quantum mechanics in their entirety. All other laws of
Quantum mechanics, whose general validity is to be verified, must be
derivable from these basic tenets. As instances of such laws to be
Proved, the law of energy conservation and the Bohr frequency
Condition primarily enter into consideration. The law of conservation
of energy states that if H be the energy, then H=0, or that H is a

! Further, they do not belong to the class of ‘bounded’ infinite matrices hitherto
almost exclusively investigated by mathematicians.
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aragonal mairix. lThe diagonal elements H(nn) of H are interpreteq
according to Heisenberg, as the enmergies of the various states of the

system and the Bohr frequency condition requires that

hv(nm) = H(nn) — H(mm),
or
Wa = H(nn) + const.

We consider the quantity

d = pq — qp.
From (11), (35) one finds
d=pg+p3—qp —gb
oH oH oH oH

T T W P TRt

Thus from (22), (23) it follows that d=0 and d is a diagonal matrix.

The diagonal elements of d are, however, specified just by the quantum
condition (27). Summarizing, we obtain the equation

h 1 38

P—gp=-—1 (38)

on introducing the unit matrix 1 defined by (6). We term the equation

(38) the ‘stronger quantum condition’ and base all further conclusions
upon it.

From the form of this equation, we deduce the following: If an
equation (4) be derived from (38), then (4) remains valid if p be
replaced by q and simultaneously # by —#A. For this reason one need
for instance derive only one of the following two equations from (38),
which can readily be performed by induction

pr-l, (39)

ng — apn
p"q qp+n2ni

We shall now prove the energy-conservation and frequency laws,
as expressed above, in the first instance for the case

H = Hi(p) + Hz(q).
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From the statements of § I, it follows that we may formally replace

Hi(p) and Hz(q) by power expansions

Hi = X agp?, Hs = 3 bsq®.
8 8

Formulae (39) and (39’) indicate that

> (41)

H

from which generally for g=g(pq) one may conclude that

. 27 |H|l 2
=" || === (Hg — qH). 43
g p J h(g gH) (43)

To establish this result, one need only conceive g as expressed in
function of p, q and p, ¢ with the aid of (11), (11°), and |¥/| as evaluated
by means of (42) in function of p, q and |:,* l, I? |, followed by application
of the relations (41). In particular, if in (43) one sets g=H, one obtains

H=0. (44)

Now that we have verified the energy-conservation law and recog-
Nized the matrix H to be diagonal, equation (41) can be put into the
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form

o {um) glum) = (H{nn) — H(mm)) glam),

hv(nm) p(nm) = (H(nn) — H(mm)) p(nm),

from which the frequency condition follows.

If we now go over to consideration of more general Hamilton
functions H*=H*(pq), it can easily be seen that in general H* no longer
vanishes (examples such as H*=p?q, readily reveal this). It can
however be observed that the Hamilton function H=3(p°q+qp?)
yields the same equations of motion as H* and that H again vanishes.
In consequence we may express the energy-conservation and frequency
laws in the following way: To each function H*=H*(pq) there can be
assigned a function H=H(pq) such that as Hamiltonians H* and H yield
the same equations of motion and that for these equations of motion H

ASSUMES € OLE O I/’/’: 1ONLCN \ ONSLan 1 me ana 41 7
the frequency condition.

On bearing in mind the considerations discussed above, it suffices
to show that the function H to be specified satisfies not only the
conditions

oH  oH* oH  oH*
= = (45)

op op

but in addition satisfies equations (40). From § 1, the matrix H* is
formally to be represented as a sum of products of powers of p and q.
Because of the linearity of equations (40), (45) in H, H* we have simply
to specify the commensurate sum term in H as counterpart to each
individual sum term in H*. Thus we need consider solely the case

k
H* =TI (stqrj). (4’6)
j=1
It follows from the remarks of § 2 that equations (45) can be satisfied
by specifying H as a linear form of those products of powers of p, 4
which arise from H* through cyclic interchange of the factors; herein
the sum of the coefficients must be held to unity. The question a5
to how these coefficients are to be chosen so that equations (40) may
also be satisfied is less easy to answer. It may at this juncture sufficé
to dispose of the case k=1, namely

H* = psqf. (47)
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The formula (39) can be generalized! to

7 m 1
i

i 2‘ qn—l-l Pm“l ql. (48)

man — qhphMm —
prgt —qpr=m— - T

For n=1 this reverts to (39); in general (48) ensues from the fact
that because of (39) one has

h
pmqn+1 —_ q‘n+1pm — (p‘ﬂ'lq‘n —_— qﬂpm)q _.I._ m Eyt_i qﬂpm'f'l.

The new formula

pmqn — g =n

m—1

- m—1—fan—1 48’

= EO prm-1-iqn-ip (48)

is obtained on interchanging p and q and reversing the sign of A.
Comparison with (48) yields

- 8=lgrpl — ’ r—Jpsqs. 49
s+1,§9” qp r+1?§gq p%q (49)

We now assert: The matrix H belonging to H* as given by (47) is:

8

H= s=—lgrpl. 50
L i (50)
We need only prove equations (40), to which end we recall the
derivatives, (18') § 2.
From (50), we now obtain the relation

P 1 (qrps+1 — Ps+lqr),

and according to (48) this is equivalent to the lower of equations (40).
Further, using (49) we find

s 1 (P8qr+1 — qr+lps),

! A different generalization is furnished by the formulae

pmgn — ' 71 (") (%) (—h—-)j qn=1 s,

j=0 N7/ N7/ \2n
m,n - ]

qrpm = > ﬂ(?ﬂ)(‘ﬂ)( h) pm—i qn—J,
j=0 N7/ N7/ \ 2n

Where 7 runs to the lesser of the two integers m, n.
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and by (48’) this is equivalent to the upper of equations (40). Thig
completes the requisite proof.

Whereas in classical mechanics energy conservation (H=0) ig
directly apparent from the canonical equations, the same law of
energy conservation in quantum mechanics, H=0 lies, as one can see,
more deeply hidden beneath the surface.

That its demonstrability from assumed postulates is far from being
trivial will be appreciated if, following more closely the classical
—method of proof, one sets out to prove H to be constant simply by —
evaluating H. To this end, one first has to express H as function o}f’
p, q and p, ¢ with the aid of (11), (11’), whereupon for p and q the
values —9dH/dq, oH/dp have to be introduced. This yields H in function
of p and q. Equation (38) or the formulae quoted in the footnote to
equation (48) which were derived from (38) permit this function to
be converted into a sum of terms of the type ap®q” and one then has

ferent lines, becomes so exceedingly involved! that it seems hardly
feasible. The fact that nonetheless energy-conservation and frequency
laws could be proved in so general a context would seem to us to
furnish strong grounds to hope that this theory embraces truly
deep-seated physical laws.

In conclusion, we append a result here which can easily be derived
from the formulae of this section, namely: Equations (35), (37) can
be replaced by (38) and (44) (with H representing the energy), the frequen-
cies are thereby to be derived from the frequency condition.

In the continuation to.this paper, we shall examine the important

applications to which this theorem gives rise.

CHAPTER 3. INVESTIGATION OF THE ANHARMONIC
OSCILLATOR

The anharmonic oscillator, having
H = }p? + }opq® + 3Ag® (51)
has already been considered in detail by Heisenberg. Nevertheless, its

1 For the case H=(1/2m)p2+U(q) it can immediately be carried out with the
aid of (39).
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investigation will here be renewed with the aim of determining the
most_general solution of the fundamental equations for this case. If

the basic equations of the present theory are indeed complete and do
not require to be supplemented any further, then the absolute values
|g(nm)|, |p(nm)| of the elements of the matrices q and p must uniquely
be determined by these equations, and thus it becomes important to
check this for the example (51). On the other hand, it is to be expected
that an uncertainty will still persist with respect to the phases gum,

yam in the relations
g(nm) = |q(nm)le,
p(nm) = |p(nm)|e'*™.

For the statistical theory, e.g., of the interaction of quantized atoms
with external radiation fields, it becomes of fundamental importance

5. Harmonic oscillator

The starting point in our considerations is the theory of the harmonic
oscillator; for small 4, one can regard the motion as expressed by
equation (51) to be a perturbation of the normal harmonic oscillation

having energy
H = 3p% + ogq. (52)

Even for this simple problem it is necessary to supplement Heisen-
berg’s analysis. This latter employs correspondence considerations to
arrive at significant deductions as to the form of the solution: namely,
since classically only a single harmonic component is present, Heisen-
berg selects a matrix which represents transitions between adjacent
states only, and which thus has the form

0 g0 0 O..
g9 0 g0 0 ..
0 ..

1=lo0 g¢evo g9 (53)

We here strive to build up the entire theory self-dependently, without
invoking assistance from classical theory on the basis of the principle
of correspondence. We shall therefore investigate whether the form
?f the matrix (53) cannot itself be derived from the basic formulae or,
if this proves impossible, which additional postulates are required.
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From what has been stated in § 3 regarding the invariance with
respect to permutation of rows and columns, one can see right away
that the exact form of the matrix (53) can never be deduced from the
fundamental equations, since if rows and columns be subjected to
the same permutation, the canonical equations and the quantum
condition remain invariant and thereby one obtains a new and ap-
parently different solution. But all such solutions naturally differ
only in the notation, i.e., in the way the elements are numbered. We

] , 1 : beri its el the

solution can always be brought into the form (53). The equation of

motion
q+ wig =0 (54)
runs as follows for the elements:
2 — 2 —
where
wo = 27y, wnm) = W — W

From the stronger quantum condition

h
Pg—qp=—-—1, (56)
it follows that for each » there must exist a corresponding #’ such
that g(nn') 0, since if there were a value of » for which all g(nn')
were equal to zero, then the nth diagonal element of pg—qp would be
zero, which contradicts the quantum condition. Hence equation (55)
implies that there is always an »’ for which

IWn - Wn" == }Wo.

But since we have assumed in our basic principles that when »#m,
the energies are always unequal (W,#Wp,), it follows that at most
two such indices #’ and »#” can exist, for the corresponding Wy, Wy~
are solutions of the quadratic equation

(Wo — 2)2 = B2,

and if indeed #wo such indices »’, n” exist, it follows that the corre-
sponding frequences must be related as:

v(nn') = — v(nn"). (57)
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Now from (56) we get

k

and the energy (52) ensues as

H(nm) = } X 4n® §{—v(nk) v(km) q(nk) q(km) + viq(nk) q(km)}

= 272 Ekj q(nk) q(km){vk — v(nk) v(km)}.

In particular, for m=n we have
H(nn) = Wy = 4a?;(lg(nn')|2 + |g(nn")[2). (59)

Moreover, we can now distinguish between three possible cases:

(a) no n” exists and one has Wy >W,;
.r--‘-r\ v\rl PaX = Vol }-\an YA/ /TI/

() ” .
(D) O €xXistSana one nas wx<rry,

(c) »” exists.

In case (b) we now consider #’ in place of »; to this there belong at
most two indices (»’)" and (»’)" and of these, one has to equal n. We
thereby revert to one of the cases (a) or (c) and can accordingly omit
further consideration of (b).

In case (a), »(n'n)=-+w»o and from (58) it follows that

volg(nn’)|2 = h[8n2, (60)
and thus from (59) that
n = H(nn) = 4n2d|q(nn’)|2 = Jvoh.

Because of the assumption that W,%W,, for n#m there is thus at
most one index n=mngo for which the case (a) applies.
If such an ng exists, we can specify a series of numbers %g, %1, %3,

m3, ..., such that (ng)'=mngs1 and Wy >Wy. Then invariably
(nk+1)"=ng. Hence for k>0, equations (58) and (59) give

H(ngnr) = 4n2vi{|q(nx, 7e+1)|2 + |9(nr, 7e-1)|%, (61)

3h = davoflq(nk, ne+1)12 — |q(nE, nx-1)[%}. (62)

From (60) and (62) it follows that

(k + 1), (63)

2 —
1q(nk, #e+1)] Btve
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and thence from (61) that

h & 04

Wa, = H(ng, ne) = voilk + 3)- (64)
Now, we still have to check whether it be possible that there is ng
value of # for which case (a) applies. Beginning with an arbitrary #,
we can then build no=n, and n8=n_1 and with each of these latter
write n1=ng, n;=n9 and n_,=ng, n_;=n_p etc. In this manner we
obtain a series of numbers ... #n_3, n_1, %9, 71, 2 ..., and equations (61),
ween —oo co. ible,

since by (62) the quantities xx=|q(nx+1, 7#x)|2 form an equispaced
series of numbers, and since they are positive, there must be a least
value. The relevant index can then again be designated as #ny and we
thereby revert to the previous case — thus here also, the formulae

(63), (64) apply.
One can further see that every number #» must be contained within

the numbers #j;, since otherwise one could construct a new series
~roaadina o ana - o ot o - . M ~ . 2= =

y © dEd

The starting terms of both series would then have the same value
W n=H (nn), which is not possible.

This proves that the indices 0, 1, 2, 3... can be rearranged into a
new sequence #ng, %1, %2, #3 ... such that formulae (63), (64) apply:
with these new indices, the solution then takes on Heisenberg’s form
(53). Hence this appears as the ‘normal form’ of the general solution.
By virtue of (64), it possesses the property that

W”kn > W”k‘

If, inversely, one stipulate that W,=H (nn) should always increase
with n, then it necessarily follows that nz==%; this principle thus
uniquely establishes the normal form of the solution. But thereby
only the notation becomes fixed and the calculation more transparent:
nothing new is conferred physically.

Therein lies the big difference between this and the previously
adopted semiclassical methods of determining the stationary states.
The classically calculated orbits merge into one another continuously;
consequently the quantum orbits selected at a later stage have 2
particular sequence right from the outset. The new mechanics presents
itself as an essentially discontinuous theory in that herein there is no
question of a sequence of quantum states defined by the physical
process, but rather of quantum numbers which are indeed no more
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than distinguishing indices which can be ordered and normalized
according to any practical standpoint whatsoever (e.g., according

to increasing energy Wy).

6. Anharmonic oscillator

The equations of motion

q+ woq + ¢2 =0, (66)

together with the quantum condition yield the following system of
equations for the elements:

(wp — w¥(nm))q(nm) + 2 % q(nk) q(km) = 0,

(67)
fk_‘, w(nR) g(nk) g(kn) = — hl/4n.
o) ries expansion
w(nm) = wO(nm) + Ao (nm) + 22w (nm) 4 ...
(68)

g(nm) = qo(nm) + AgV (nm) + 2292 (nm) + ...

in seeking the solution.
When A=0, one has the case of the harmonic oscillator considered
in the previous section; we write the solution (53) in the form

qO(nm) = andn,m-1 + amdn-1,m, (69)

where the bar denotes the conjugate complex value. If one builds the
square or higher powers of the matrix q0=(¢%#nm)), one arrives at
matrices of similar form, being composed of sums of terms

(5)%@ = Endn,m-p + gan—p,m- (70)
This prompts us to try a solution of the form

qO(nm) = (a)yim,

g (nm) = (1)3,

t % am (71)
g®(nm) = ()& + &),

N which odd and even values of the index p always alternate. If one
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actually inserts this in the approximation equations

Al k - (72)
2 {00(nk) (q0(nk) gD (kn) + g (nk) ¢%(kn))
k

+ w®(nk) go(nk) gO(kn)} = O |

)
@ 0f4 2(2) {42432\ 20(21492) £y(1)

P
W

bl U )‘1 il
(wm 2+2w°( ) et

T~
\

I \ £
\nm )+~

A2 , L (73)
X {00(nk) (40(nk) @ (km) 4 g (nk) gD (km)
k

+ gD (k) O(km)) + D (nk) (g%(nk) gD (km)

t + gD (nk) qO(km)) + w®(nk) g°(nk) qo(km)} =0 J

and notes the multiplication rule

Z Qnrem(& )"”(n)ﬁ,’, = Qn, nt+p, n+o+g En Nntp On,m—p—q

+ Qn, n+p, n+p—q _f_n ;7n+p-q 61&, m—p+q (74)
+ Qn, n—p, n-p+q En—p Nn—p On,m+p—q
+ Qn, n-p, n-p—q E—n—p 7711—-17—~q On, m+p+e

one sees, in setting each of the factors of dn,m—s singly to zero, that

through the substitution (71) all conditions can in fact be satisfied and

that higher terms in (71) would identically vanish.

In detail, the calculation yields the following:

The first of the equations (72) gives, after substitution of the
expressions (71),

2w(2)xn + |an|? + |an-1|2 = 0,

— 3wits + anany1 =0, (75)
wf»l,)n—-l =0,

and the second is identically satisfied. One thus has

|an|? + |an-1/?
n— - )
20?2
§ | (76)
Xl — Andn+1
" 3w}

/[ 92 0/ )
(0 — @O(mm)?) gD (mm) — 20%nm) oD (nm) q%nm)
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The first of the equations (73) yields

20040 Wy,

n+1

— ngy,'; + anXn+1 + ant2¥n = 0, (77)
wﬁl,)n—z =0,

whereas the second equation is not identically satisfied, but furnishes
a relation from which y, can be determined:

anyn + @nYn — An-1Yn-1 — @n-1Yn—-1 + 2|%n|2 — 2|xp—2|2

2 2
W1 a2 — o1

|an-—1I2 = O. (78)
wo

The solution is:

1
wgz2,?n+l = A 3 (|an+1|2 + |an-1|2 4+ 3|aal?), 1

O(UO

‘ (79)

1
7 Anln+1@n+2.

. 12w

Further, if for brevity one introduces
Nn = anYn + EnYn, (80)
then the # are determined by the equation

Mn—Np-1= —a‘g (Ian|4 — |an-1]4 4+ %Ian|2|“n+1|2 — %|an—1|2|an—-2|2)- (81)
Expressions (76) and (79) show that the quantities x,, x5, yn can
be expressed through the solution of the zero-th order approximation
an. Thus their phases are determined by those of the harmonic oscil-
lator. For the quantities y,, the situation seems to be different, since
although %, can uniquely be determined from (81), y, cannot be
Obtained absolutely from (80). It is probable that the next higher
order of approximation gives rise to an auxiliary determining equation
for yn. We have to leave this question open here but we should like
to indicate its significance as a point of principle in regard to the
Completeness of the entire theory. All questions of statistics invariably
depend finally upon whether or not our supposition that of the phases
of the g(nm) ome in each row (or each column) of the matrix remains
Undetermined be valid.
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In conclusion we present the explicit formulae which are obtaineq

by substituting the solution of the harmonic oscillator found previously
(§ 5). In normal form, by (63), this runs as follows:

an = VC(n + 1)e', C = hl4nwo = h/8n2. (82)
Thence, using (76), (79), (81) one obtains

C )
Xy = — 3 (2n+4-1),
0
Xp = 37 Vn 4 1)(n + 2)eletem) - (83)
0
C3
y;‘ —— v i '\/(n _I._ 1)(n + 2)(” _+_ 3)ei(¢u+¢n+1+¢n+i)
12w,
w’sbl,?n—l = 0’ w'szl.)n—2 = O)]
5C (84)
o= — o
that is,
L en+1)
NMn — Nu-1 = n ,
Swy
11C2

(n + 1)2,

= a v 1 ==
Nn 2¥n + AnYn 9w3

If one sets y,=|y,le!*", then

n 114/C3
|yn| cOs (pn — yn) ! 14 Vn + 18, (85)

" 2lanl | 18w

In this approximation, y, cannot be specified any more closely than
this.

However, we should like to write out the final equations when oneé
makes the assumption that y,=¢,. These are as follows (up to terms
of higher than second order in 4):

SC

3wg n+ ..., (86)

wn,n — 2) = 2wp + ...;

wn,n—1) =wy — A2
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C
g(n, n) = —A—5 (2n + N+ ...,

Wa
U

— 11Cn
—_— == ilpn—l 2 cesn
g(n, n 1) vV Cne (l + A 8ok + ),
- - (8)
gn, n —2) = A —5 Vn(n — 1)el@rtem 4

3wy

qu, % — 12w)

We have also calculated the energy directly and derived the following

formula:
5C?2
Wap = hvo(n + %) — A2 P (n(n + 1) + %{,) + ... (88)
0
The f Nition i 1 sfied. si beri 82
we have
2C?2 h
Wn'— Wn—]_=hvo—12 ) ”+ cos =_‘—w(n,”— 1),
wo 27'5
|24 |14 = 2h = h 2
n— Wnpo = 2hvy + ... —a—w(n,n—— ).

With the formula (88) we can associate the observation that already
in terms of lowest order there occurs a discrepancy from classical
theory which can formally be removed by the introduction of a ‘half-
integer’ quantum number #’'=n+}. This has already been remarked
by Heisenberg. Incidentally, our expressions w(n, #—1) as given by
(86) agree exactly with the classical frequencies in all respects. For
Comparison, we note the classical energy to bel

5C?
W = hyon — A2 3oz n2 + ...,
Wo

and thus the classical frequency to be:

! See M. Born, Atommechanik (Berlin, 1925), Chapter 4, § 42, p. 294; one has
to set a=1} in the formula (6) in order to obtain agreement with the present
Treatment,
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I owh 5C?
o] = — = hyyg — A2 n -+ ...
cl h on 0 3(1)(2,, +
! W(qu) W(qn)
= Coqu(%’ n — 1) = 7 ( n - 'n.—l)'

We have, finally, checked that the expression (88) can also be derived
from the Kramers-Born perturbation formula (up to an additive
constant).




