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Introduction

A recent experiment [1] has brought a nearly-ideal gas of Fermi-Dirac parti-
cles (40K atoms) to the condition of quantum degeneracy, in which the symmetry
of the many-particle wavefunction has a dominant effect on the equation of state
of the gas.

In the above-mentioned experiment, the gas atoms were confined by a mag-
netic field, whose effect is expressed by the harmonic potential,

V (x, y, z) =
M

2

(

w2

r(x2 + y2) + w2

zz2
)

where x, y, z are Cartesian particle coordinates, M is the particle mass, ωr =
2π 137 Hz, and ωz = 2π 19.5 Hz. This situation is close to that portrayed in the
original model used by Fermi to elucidate the effects of quantum degeneracy
on the equation of state of an ideal gas, in the paper translated here.[2] Fermi
confined the gas with an isotropic harmonic oscillator potential (ωr = ωz). This
approach contrasts with that of most modern textbook treatments, which put
the particles in a volume of constant potential, subject to either hard-wall or
periodic boundary conditions, as are appropriate to the treatment of extended,
homogeneous systems, e.g. electrons in a metal. The utility of such an approach
was recognized by Fermi, but he adopted the harmonic confining potential so as
to allow the invocation of the Bohr-Sommerfeld quantization rule in its simplest
form.
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In passing to the thermodynamic limit, the essential physics of the ideal
Fermi- Dirac gas emerges independently of the choice of confining potential.
Thus Fermi’s treatment can be enjoyed without reference to recent develop-
ments. However, since some details of his original derivation have just come to
have specific relevance to experiments, it seems appropriate to make them more
accessible to an English-speaking audience.

The translation provided here is based on the Italian original,[2] ”Sulla quan-
tizzazione del gas perfetto monoatomico,” as reprinted in the first volume of
Fermi’s collected papers.[3] A longer, German-language paper, presenting the
argument in greater detail, was subsequently published by Fermi in Zeitschrift
für Physik.[4] That paper is also reprinted in Ref. ([3]).

I thank Charles Clark and Maria Colarusso for comments on the manuscript.

On the Quantization of the Monoatomic Ideal
Gas
“Rend. Lincei”,3,145-149 (1926),

presented by the Associate A. Garbasso at the meeting of 7 February 1926

1. According to classical thermodynamics, the specific heat at constant
volume of a monoatomic ideal gas (referred to a single molecule) is given by
c = 3k/2. It is clear however that if we also want to admit the validity of the
Nernst principle for an ideal gas, we need to consider the previous expression
for c as only an approximation for high temperatures, and in reality c goes to
zero for T = 0, so that we can extend down to absolute zero the integral that
expresses the value of the entropy without leaving the constant undetermined.
To realize how this kind of variation in c can take place, it is necessary to admit
that also the motions of the ideal gas have to be quantized. It is understandable
also that such quantization will affect not only the amount of energy of the gas,
but also its equation of state, giving the so-called degeneracy phenomena of the
ideal gas for low temperatures.

The purpose of this work is to present a method that makes the quantization
of the ideal gas possible, and which is, we believe, as independent as possible
from unjustified hypotheses concerning the statistical behavior of the molecules
of the gas.

Recently many attempts have been made to establish the equation of state
for an ideal gas.[5] The formulae given by the various authors and ours differ
from each other and from the classical equation of state, only for very low tem-
peratures and very high densities; unfortunately these are the same conditions
for which the differences between the laws of real gases and ideal gases are most
important. Since under conveniently attainable experimental conditions, the
deviations from the equation of state pV = kT caused by the degeneracy of the
gas, even if not negligible, are always considerably smaller than those due to
the fact that the gas is real and not ideal, so that up to the present the former
have been masked by the latter; it cannot be excluded that, with an improved

2



knowledge of the forces acting between the molecules of a real gas, it might be
possible, more or less in the near future, to separate the two deviations, so as
to decide experimentally between the different theories of the degeneration of
the ideal gas.

2. In order to be able to perform the quantization of the motion of the
molecules of an ideal gas it is necessary to put ourselves in a position to ap-
ply Sommerfeld’s rules to their motion: this can clearly be done in an infinite
number of ways which, of course, all give the same result. For example, we can
suppose the gas to be enclosed in a parallelepiped receptacle with elastic walls,
quantizing the triply periodic motion of the molecule that bounces between the
six faces of the receptacle; or, more generally, we can apply to the molecules
a suitable system of forces such that their motion becomes periodic and can
then be quantized. The hypothesis that the gas is ideal allows us to neglect in
all these cases the forces acting between the molecules, so that the mechanical
motion of each one of these takes place just as if the others did not exist. It
is possible however to realize that the simple quantization, with Sommerfeld’s
rules, of the motion of the molecules considered as completely independent from
each other is not sufficient to get correct results; because, even if in this way the
specific heat goes to zero for T = 0, we find that its value depends not only on
the temperature and density, but also on the total amount of gas, and goes, for
every temperature, to the limit 3k/2 when, while keeping the density constant,
the total amount of gas goes to infinity. Thus it seems necessary to admit that
we must add some complements to Sommerfeld’s rules, in the case of systems,
like ours, in which the elements are not distinguishable from each other.[6]

To have a hint of what is the most plausible hypothesis that we can make, it
is convenient for us to examine how things work for other systems that, like our
ideal gas, have indistinguishable elements; and precisely, we want to examine
the behavior of atoms heavier than hydrogen, all containing more than one elec-
tron. If we consider the deepest parts of a heavy atom, we find conditions such
that the forces that act on the electrons are very small compared with those
created by the nucleus. In these circumstances the pure and simple application
of Sommerfeld’s rules would lead us to predict that, in the normal state of the
atom, a considerable number of electrons should be found in an orbit of total
quantum 1. In reality we observe that the K ring is already saturated when
it contains two electrons, and in the same way the L ring is saturated when
it contains 8 electrons, etc. This fact was interpreted by Stoner,[7] and even
more precisely by Pauli,[8] in the following way: let us characterize a possible
electronic orbit in a complex atom with 4 quantum numbers; n,k,j,m that have
respectively the meaning of total quantum, azimuthal quantum, internal quan-
tum and magnetic quantum. Given the inequalities that those four numbers
have to satisfy, it is found that for n = 1, there exist only two triples of values
k, j, m; for n = 2, there exist 8 triples of values, etc. To realize this fact, it is
sufficient to assume that in the atom there can not be two electrons with the
orbits described by the same quantum numbers; in other words it is required to
admit that an electronic orbit is already ”occupied” when it contains only one
electron.
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3. We now want to find out if such a hypothesis can give good results also
in the problem of the quantization of the ideal gas: we shall thus assume that
in our gas there can be at the most one molecule, whose motion is characterized
by certain quantum numbers, and we shall show that this hypothesis leads
us to a perfectly consistent theory for the quantization of the ideal gas that,
in particular, accounts for the expected decrease of the specific heat for low
temperatures, and that yields the exact value for the constant of the entropy of
the ideal gas.

Reserving publication of the mathematical details of this theory to another
occasion, we limit ourselves in this Note to showing the principles of the method
and the results.

First of all we have to subject our gas to such conditions that the motion of
its molecules can be quantized. As we have seen this can be done in an infinite
number of ways; however as the result is independent of the specific way chosen,
we shall choose the one that makes the calculations easy; and precisely we shall
assume that an attractive force toward a fixed point O acts on our molecules,
with strength proportional to the distance r of the molecule from O; so that
each molecule will become a single spatial harmonic oscillator, with a frequency
that we call ν. The orbit of the molecule will be characterized by its three
quantum numbers s1,s2,s3, that are related to its energy through the relation

w = hν(s1 + s2 + s3) = hνs (1)

The energy of a molecule can thus take all the multiple integer values of hν,
and the value shν can be taken in Qs = 1

2
(s + 1)(s + 2) modes.

The zero energy can thus be realized only in one way, the energy hν only
in 3 ways, the energy 2hν in 6 ways, etc. To realize the consequences of our
hypothesis, that given quantum numbers can not correspond to more than one
molecule, let us consider the limiting case of having N molecules at the absolute
zero. At this temperature the gas has to be in the state of minimum energy.
Thus, if there was no restriction on the number of molecules that can have a
certain energy, all the molecules would be in the state of zero energy, and all
the three quantum numbers of each of them would be zero. Instead, according
to our hypothesis, it is not possible to have more than one molecule with all
the three quantum numbers equal to zero; so if N = 1, the only molecule will
occupy the place with zero energy, if instead N = 4, one of the molecules will
occupy the place with zero energy, and the other three the places with energy
hν; if N = 10, one of the molecules will occupy the place of zero energy, three
will occupy the three places of energy hν, and the remaining six the six places
of energy 2hν, etc.

Let us suppose now that we have to distribute among our N molecules the
total energy W = Ehν (E= integer number); and let us label with Ns ≤ Qs the
number of molecules of energy shν. It is easy to find that the most probable
values of Ns are

Ns =
αQs

eβs + α
(2)
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where α and β are some constants dependent on W and N . To find the relation
between these constants and the temperature, we observe that, because of the
effect of the attraction toward O, the density of our gas will be a function of r,
that must go to zero for r = ∞. So, for r = ∞ the degeneracy phenomena must
cease, and in particular the distribution of the velocities, easily obtainable from
(2), must become Maxwell’s law. It is thus found that it has to be that

β =
hν

kT
(3)

Now we are able to find from (2) the function n(L)dL, that represents, for
a fixed value of r, the density of molecules with an energy that ranges from L
to L + dL (Analogous to Maxwell’s law), and from that we can find the mean
kinetic energy L̄ of the molecules at distance r, that is a function not only of
the temperature, but also of the density n. It is found precisely that

L̄ =
3h2n

2

3

4πm
P (

2πmkT

h2n
2

3

) (4)

Here we have indicated by P (x) a function, with a fairly complicated analytic
expression, whose evaluation is possible when x is very large or very small using
the asymptotic formulae

P (x) = x(1 + 2−
5

2 x−

3

2 + .....)

P (x) =
1

5

(

9π

2

)
3

2

{

1 +
5

9

(

4π4

3

)
3

2

x2 + .....

}

(5)

To deduce from (4) the equation of state we apply the virial relation. We
find that the pressure is given by

p =
2

3
nL̄ =

h2n
5

3

2πm
P (

2πmkT

h2n
2

3

) (6)

In the limit of high temperatures, that is for small degeneracy, the equation
of state thus takes the following form

p = nkT

(

1 +
1

16

h3n

(πmkT )
3

2

+ ....

)

(7)

The pressure is therefore greater than that predicted from the classical equa-
tion of state. For an ideal gas of the atomic weight of helium, at a temperature
of 5o absolute, and at a pressure of 10 atmospheres the difference would be of
15%. From (4) and (5) we can also deduce the expression of the specific heat
for low temperatures. It is found that

cv =

(

16π8

9

)
1

3 mk2

h2n
2

3

T + ..... (8)
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In the same way we can find the absolute value of the entropy. Performing
the calculation we find, for high temperatures

S = n

∫ T

0

1

T
dL̄ = n

(

5

2
log T − log p + log

(2πm)
3

2 k
5

2 e
5

2

h3

)

(9)

which coincides with the value of the entropy given by Tetrode and by Stern.[9]
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