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THE LOGIC OF QUANTUM MECHANICS 

BY GARRETTBIRKHOFF JOHNVONAND NEUMANN 

(Received April 4, 1936) 

1. Introduction. One of the aspects of quantum theory which has attracted 
the most general attention, is the novelty of the logical notions which it pre- 
supposes. I t  asserts that even a complete mathematical description of a physi- 
cal system G does not in general enable one to predict with certainty the result 
of an experiment on G, and that in particular one can never predict with cer- 
tainty both the position and the momentum of G (Heisenberg's Uncertainty 
Principle). It further asserts that most pairs of observations are incompatible, 
and cannot be made on G simultaneously (Principle of Non-commutativity of 
Observations). 

The object of the present paper is to discover what logical structure one may 
hope to find in physical theories which, like quantum mechanics, do not con- 
form to classical logic. Our main conclusion, based on admittedly heuristic 
arguments, is that one can reasonably expect to find a calculus of propositions 
which is formally indistinguishable from the calculus of linear subspaces with 
respect to set products, linear sums, and orthogonal wrnpbments--and resembles 
the usual calculus of propositions with respect to and, or, and not. 

In order to avoid being committed to quantum theory in its present form, we 
have first (in $52-6) stated the heuristic arguments which suggest that such a 
calculus is the proper one in quantum mechanics, and then (in $57-14) recon-
structed this calculus from the axiomatic standpoint. In both parts an attempt 
has been made to clarify the discussion by continual comparison with classical 
mechanics and its propositional calculi. The paper ends with a few tentative 
conclusions which may be drawn from the material just summarized. 

2. Observations on physical systems. The concept of a physically observ- 
able "physical system" is present in all branches of physics, and we shall 
assume it. 

It is clear that an "observation" of a physical system G can be described 
generally as a writing down of the readings from various1 compatible measure- 
ments. Thus if the measurements are denoted by the symbols PI ,  . . . ,p, , then 

1 If one prefera, one may regard a set of compatible measurements as a single composite 
"meesurement"-and also admit non-numerical reading-without interfering with subse- 
quent arguments. 

Among conspicuous observables in quantum theory are position, momentum, energy, 
and (non-numerical) symmetry. 

823 
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an observation of @ amounts to specifying numbers XI,  . . . , x, corresponding 
to the different wk . 

I t  follows that the most general form of a prediction concerning G is that the 
point (xl, . . , xn )  determined by actually measuring pl, . - , p,, will lie in a 
subset S of (xl , . . . , xn)-space. Hence if we call the (xl, . , xn)-spaces asso- 
ciated with G, its "observation-spaces," we may call the subsets of the observa- 
tion-spaces associated with any physical system G, the "experimental propo- 
sitions" concerning G. 

3. Phase-spaces. There is one concept which quantum theory shares alike 
with classical mechanics and classical electrodynamics. This is the concept of a 
mathematical "phase-space." 

According to this concept, any physical system G is at  each instant$ hypo-
thetically associated with a "point" p in a fixed phase-space Z; this point is 
supposed to represent mathematically the "state" of G, and the "state" of 6 is 
supposed to be ascertainable by "ma~imal"~ observations. 

Furthermore, the point po associated with (5at  a time to, together with a pre- 
scribed mathematical "law of propagation," fix the point pr associated with 6 
at any later time t; this assumption evidently embodies the principle of muthe- 
matical causation.a 

Thus in classical mechanics, each point of 2.corresponds to a choice of n 
position and n conjugate momentum coordinates-and the law of propagation 
may be Newton's inverse-square law of attraction. Hence in this case Z is a 
fegion of ordinary 2n-dimensional space. In electrodynamics, the points of Z 
can only be specified after certain junctions--such as the electromagnetic and 
electrostatic potential-are known; hence I:is a function-space of infinitely many 
dimensions. Similarly, in quantum theory the points of I:correspond to so-caIIed 
11wave-functi&," and hence Z is again a function-space-usually' assumed to 
be Hilbert space. 

In electrodynamics, the law of propagation is contained in Maxwell's equa- 
tions, and in quantum theory, in equations due to Schrodinger. In any case, 
the law of propagation may be imagined as inducing a steady fluid motion in 
the phase-space. 

I t  has proved to be a fruitful observation that in many important cases of 
classical dynamics, this flow conserves volumes. It may be noted that in 
quantum mechanics, the flow conserves distances (i.e., the equations are "uni- 
tary"). 

2 L. Pauling and E. B. Wilson, "An introduetion to quantum mechanics," McGraw-Hill, 
1935, p. 422. Dirac, "Quantum mechanics," Oxford, 1930, $4. 

a For the existence of mathematical causation, cf. also p. 65 of Heisenberg's "The physical 
principles of the quantum theory," Chicago, 1929. 
' Cf. J. von Neumann, "Mathematische Gundlagen der Quanten-mechanik," Berlin, 1931. 

p. 18. 
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4. Propositions as subsets of phase-space. Now before a phase-space can 
become imbued with reality, its elements and subsets must be correlated in 
some way with "experimental propositions" (which are subsets of different 
observation-spaces). Moreover, this must be so done that set-theoretical inclu- 
sion (which is the analogue of logical implication) is preserved. 

There is an obvious way to do this in dynarnical systems of the classical type.5 
One can measure position and its first time-derivative velocity-and hence 
momentum-explicitly, and so establish a one-one correspondence which pre- 
serves inclusion between subsets of phase-space and subsets of a suitable obser- 
vation-space. 

In the cases of the kinetic theory of gases and of electromagnetic waves no 
such simple procedure is possible, but it was imagined for a long time that 
I (demons" of small enough size could by tracing the motion of each particle, or 
by a dynamometer and infinitesimal point-charges and magnets, measure quan- 
tities corresponding to every coijrdinate of the phase-space involved. 

In quantum theory not even this is imagined, and the possibility of predicting 
in general the readings from measurements on a physical system f5from a knowl- 
edge of its "state" is denied; only statistical predictions are always possible. 

This has been interpreted as a renunciation of the doctrine of predetermina- 
tion; a thoughtful analysis shows that another and more subtle idea is involved. 
The central idea is that physical quantities are related, but are not all computable 
from a number of independent basic quantities (such as position and vel~city).~ 

We shall show in 512 that this situation has an exact algebraic analogue in the 
calculus of propositions. 

5. Propositional calculi in classical dynamics. Thus we see that an un-
critical acceptance of the ideas of classical dynamics (particularly as they 
involve n-body problems) leads one to identify each subset of phase-space with 
an experimental proposition (the proposition that the system considered has 
position and momentum coordinates satisfying certain conditions) and con-
versely. 

This is easily seen to be unrealistic; for example, how absurd it would be to 
call an "experimental proposition," the assertion that the angular momentum 
(in radians per second) of the earth around the sun was at  a particular instant a 
rational number! 

Actually, at  least in statistics, it seems best to assume that it is the Lebesgue- 
mamrable subsets of a phase-space which correspond to experimental proposi- 
tions, two subseta being identified, if their difference has Lebesgue-measure 0.l 

Like systems idealizing the solar system or projectile motion. 
A similar situation arise%when one tries to correlate polarizations in different planes of 

electromagnetic waves. 
Cf. J. von Neumann, "Operatorenmethoden in  der klassischen Mechanik," Annals of 

Math. 33 (1932), 5&. The difference of two sets S,, Sr is the set (St+ St) - S1.S2of 
those pointa, which belong to one of them, but not to both. 
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But in either case, the set-theoretical sum and product of any two subsets, and 
the complement of any one subset of phase-space corresponding to experimental 
propositions, has the same property. That is, by definitions 

The experimental propositions concerning any system in classical mechanics, 
correspond to a "field" oj subsets of its phase-space. More precisely: To the 
"quotient" of such a jeld by an ideal in it. At any rate they jomn a "Boolean 
A lgeb~a."~ 

In the axiomatic discussion of propositional calculi which follows, it will be 
shown that this is inevitable when one is dealing with exclusively compatible 
measurements, and also that it is logically immaterial which particular field of 
sets is used. 

6. A propositional calculus for quantum mechanics. The question of the 
connection in quantum mechanics between subsets of observation-spaces (or 
I1experimental propositions") and subsets of the phase-space of a system 6, 
has not been touched. The present section will be devoted to defining such a 
connection, proving some facts about it, and obtaining from it heuristically by 
introducing a plausible postulate, a propositional calculus for quantum me- 
chanics. 

Accordingly, let us observe that if al, . . . ,a, are any compatible observations 
on a quantum-mechanical system 6with phase-space 2, thenlo there exists a set 
of mutually orthogonal closed linear subspaces Q i  of 2 (which correspond to the 
families of proper functions satisfying a1j = Xi.1j, . - . ,anj = k.,j) such that 
every point (or function) j e 2 can be uniquely written in the form 

Hence if we state the 
DEFINITION:By the "mathematical representative" of a subset S of any 

observation-space (determihed by compatible observations c u l l  . . . , a,) for a 
quantum-mechanical system 6,will be meant the set of all points f of the phase- 
space of @, which are linearly determined by proper functions f k  satisfying 
a l f k  = A l f k ,  . . .  ,a n j b  = X n j k ,  where (XI, . . . ,An) e S .  
Then it follows immediately: (1) that the mathematical representative of any 
experimental proposition is a closed linear subspace of Hilbert space (2) since 
all operators of quantum mechanics are Herrnitian, that the mathematical 
representative of the negativel1 of any experimental proposition is the orthogonal 

F.Hausdorff, "Mengenlehre," Berlin, 1927, p. 78. 
M. H. Stone, "Boolean Algebras and their application to topology," Proc. Nat. Acad. 20 

(1934),p. 197. 
lo Cf. von Neumann, op. cit., pp. 121,90, or Dirac, op. cit., 17. We disregard complica- 

tions due to the possibility of a continuous spectrum. They are inessential in the pres- 
ent case. 

l1 By the "negativeJJ of an experimental proposition (or subset S of an observation-
space) is meant the experimental proposition corresponding to the set-complement of S in 
the same observation-space. 
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complement of the mathematical representative of the proposition itself (3) the 
following three conditions on two experimental propositions P and Q concerning 
a given type of physical system are equivalent: 

(3s) The mathematical representative of P is a subset of the mathematical 
representative of Q. 

(3b) P implies Q-that is, whenever one can predict P with certainty, one can 
predict Q with certainty. 

(3c) For any statistical ensemble of systems, the probability of P is at  most 
the probability of Q. 

The equivalence of (3s)-(3c) leads one to regard the aggregate of the mathe- 
matical representatives of the experimental propositions concerning any physical 
system G,as representing mathematically the propositional calculus for 6. 

We now introduce the 
POSTULATE:The set-theoretical product of any two mathematical representatives 

of experimental propositions concerning a quantum-mechanical system, is itself the 
mathematical representative of an experimental proposition. 

REMARKS:This postulate would clearly be implied by the not unnatural 
conjecture that all Hermitian-symmetric operators in Hilbert space (phase 
space) correspond to ob~ervables;'~ it would even be implied by the conjecture 
that those operators which correspond to obsemables coincide with the Hermi- 
tian-symmetric elements of a suitable operator-ring M.l$ 

Now the closed linear sum QI + Qz of any two closed linear subspaces Qi of 
Hilbert space, is the orthogonal complement of the set-product fl: .Q: of the 
orthogonal complements Q: of the Q ;hence if one adds the above postulate to the 
usual postulates of quantum theory, then one can deduce that 

The set-product and closed linear sum of any two, and the orthogonal complement 
of any one closed linear subspace of Hilberl space representing mathematically an 
ezperzerzmed.aEproposition concerning a quantum-mechanical system 6, itself 
represents an experimental proposition concerning 6. 

This defines the calculus of experimental propositions concerning G, as a 
calculus with three operations and a relation of implication, which closely 
resembles the systems defined in $5. We shall now turn to the analysis and com- 
parison of all three calculi from an axiomatic-algebraic standpoint. 

7. Implication as ptWial ordering. I t  was suggested above that in any 
physical theory involving a phase-space, the experimental propositions concern- 

lz I.e., that given such an operator a, one "could" find an observable for which the 
proper states were the proper functions of a. 

p. 120. It is shown on p. 141, loc. cit. (Definition 4.2.1 and Lemma 4.2.1), that the closed 
linear sets of a ring M-that is those, the "projection operators" of which belong to M-
coincide with the closed linear sets which are invariant under a certain group of rotations of 
Hilbert space. And the latter property is obviously conserved when a set-theoretical 
intersection is formed. 

(1936),37rings of operators," Annals of Math., "Onv. Neumann, J.Murray and J.F. 1' 



828 GARRETT BIRKHOFF AND JOHN VON NEUMANN 

ing a system k% correspond to a family of subsets of its phase-space 2,in such a 
way that "x implies y" (x and y being any two experimental propositions) 
means that the subset of Z corresponding to x is contained set-theoretically in 
the subset corresponding to y. This hypothesis clearly is important in propor-
tion as relationships of implication exist between experimental propositions 
corresponding to subsets of different observation-spaces. 

The present section will be devoted to corroborating this hypothesis by identi-
fying the algebraic-axiomatic properties of logical implication with those of set-
inclusion. 

It is customary to admit as relations of "implication," only relations satisfy-
ing 

S1: x implies x. 
52: If x implies y and y impliesz, then x impliesz. 
53: If x implies y and y implies x, then x and y are logically equivalent. 

In fact, 53 need not be stated as a postulate at  all, but can be regarded as a 
definition of logical equivalence. Pursuing this line of thought, one can interpret 
as a "physical quality," the set of all experimental propositions logically equiva-
lent to a given experimental proposition.14 

Now if one regards the set S, of propositions implying a given proposition x as 
a "mathematical representative" of x, then by S3 the correspondence between 
the x and the S, is one-one, and x implies y if and only if S, C S,. While con-
versely, if L is any system of subsets X of a fixed class r, then there is an iso-
morphism which carries inclusion into logical implication between L and the 
system L* of propositions "x is a point of X," X e L. 

Thus we see that the properties of logical implication are indistinguishable 
from those of set-inclusion, and that therefore it is algebraically reasonable to try 
to correlate physical qualities with subsets of phase-space. 

A system satisfying 51-53, and in which the relation "z implies y" is written 
x C y, is usually16called a "partially ordered system," and thus our first postu-
late concerning propositjonal calculi is that the physical qualities attm'butable to 
any physical systemjomn a partially ordered system. 

I t  does not seem excessiveto require that in addition any such calculus contain 
two special propositions: the proposition 0 that the system considered exists, 
and the proposition @ that it does not exist. Clearly 

S4: @ C x C 0 for any x. 

@ is, from a logical standpoint, the "identically false" or "absurd" proposition; 
is the "identically true" or "self-evident" proposition. 

8. Lattices. In any calculus of propositions, it is natural to imagine that 
there is a weakest proposition implying, and a strongest proposition implied by, 

l4 Thus in $6, closed linear subspaces of Hilbert space correspond one-many to experi-
mental propositions, but one-one to physical qualities in this sense. 

l6 F.Hau~dorff,"Qrundztigeder Mengenlehre," Leipzig, 1914,Chap. VI, $1. 
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a given pair of propositions. In fact, investigations of partially ordered systems 
from different angles all indicate that the first property which they are likely to 
possess, is the existence of greatest lower bounds and least upper bounds to sub- 
sets of their elements. Accordingly, we state 

DEFINITION: if andA partially ordered system L will be called a "lattice" 

only if to any pair x and y of its elements there correspond 


S5: A "meet" or "greatest lower bound'' x n y such that (5a) x n y C x, (5b) 
x fl y Cy,(5c)z C x a n d z  ~ y i m p l y z  c x  n y. 

S6: A "join" or "least upper bound" x n" satisfying (6a) x U y 3x, (6b) 
x U y 3 y , ( 6 c ) w  3 x a n d w  3y implyw 3 x  U y. 

The relation between meets and joins and abstract inclusion can be sum- . .  
marized as foll~ws,~e 

(8.1) In any lattice L, the following formal identities are true, 

L1:a n - a  = a a n d a  U a = a. 
L 2 : a n b = b n a a n d a u b = b u a .  
L 3 : a n  ( b f l ~ )= ( a n  b) n c a n d a u  ( b u c )  = ( a u  b) U c .  
~ 4 : U (a fl b) = a.a = a fl (a U b) 

Moreover, the relations a 3b, a n b = b, and a U b = a are equivalent-each 
implies both of the others. 

(8.2) Conversely, in any set of elements satisfying L2-L4 (L1 is redundant), 
a n b = b and a U b = a are equivalent. And if one defines them to mean 
a 3b, then one reveals L as a lattice. 

Clearly L1-L4 are well-known formal properties of and and or in ordinary 
logic. This gives an algebraic reason for admitting as a postulate (if necessary) 
the statement that a given calculus of propositions is a lattice. There are other 
reasons17 which impel one to admit as a postulate the stronger statement that the 
set-product of any two subsets of a phase-space which correspond to physical 
qualities, itself represents a physical quality-this is, of course, the Postulate 
of $6. 

I t  is worth remarking that in classical mechanics, one can easily define the 
meet or join of any' two experimental propositions as an experimental proposi-
tion-simply by having independent observers read off the measurements which 
either proposition involves, and combining the results logically. This is true in 
quantum mechanics only exceptionally-only when all. the measurements in-
volved commute (are compatible); in general, one can only express the join or 

10 The final result wes found independently by 0.ore, "The foundation8 of abstract 
algebra. I.," Annald of Math. 36 (1935), 406-37, and by H. MacNeille in his Haward Doc-. 
toral Thesis, 1935. 

l7 The first reason is that this implies no restriction on the abstract nature of a lattice-- 
any lattice can be realized as a system of its own subsets, in such a way that a n  b is the set- 
product of a and b. The second reason is that if one regards a subset S of the phase-space of 
a system 6as corresponding to the certainty of observing 6 in S, then it is natural to assume 
that the combined certainty of observing 6 in S and T is the certainty of observing G in 
S.T = SnT,-and assumes quantum theory. 
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meet of two given experimental propositions as a class of logically equivalent 
experimental propositions-i.e., as a physical quality.18 

9. Complemented lattices. Besides the (binary) operations of meet- and 
. join-formation, there is a third (unary) operation which may be defined in par- 

tially ordered systems. This is the operation of complementation. 
In the case of lattices isomorphic with "fields" of sets, complementation corre- 

sponds to passage to the set-complement. In the case of closed linear sub- 
spaces of Hilbert space (or of Cartesian %space), it corresponds to passage.to the 
orthogonal complement. In either case, denoting the "complement" of an 
element a by a', one has the formal identities, 

L71: (a')' = a. 

L72: a n a' = Q a n d a  U a' = 0. 

L73: a C b implies a' 3 b'. 


By definition, L71 and L73 amount to asserting that complementation is a 
i 1dual automorphism" of period two. I t  is an immediate corollary of this and the 
duality between the definitions (in terms of inclusion) of meet and join, that 

L74: (a fl b)' = a' U b' and (a U b)' = a' fI b' 

and another corollary that the second half of L72 is redundant. [Proof: by L71 
and the first half of L74, (a U a') = (a" U a') = (a' n a)' = @', while under 
inversion of inclusion @ evidently becomes O.] This permits one to deduce L72 
from the even weaker assumption that a C a' implies a = 0. Proof: for any x, 
(X n x')' = (XIu x") = u 3 n z'. 

Hence if one admits as a postulate the assertion that passage from an experi- 
mental proposition a to its comphent a' is a dual automorphisrn of period two,and 
a implies a' is absurd, one has in effect admitted L71-L74. 

This postulate is independently suggested (and L71 proved) by the fact the 
i icomplement" of the proposition that the readings X I ,  . . . ,x, from a series of 
compatible observations bl ,  . . . , p, lie in a subset S of (4, . . . , xn)-space,is by 
definition the proposition that the readings lie in the set-complement of S. 

10. The distributive identity. Up to now, we have only discussed formal 
features of logical structure which seem to be common to classical dynamics and 
the quantum theory. +Wenow turn to the central difference between them-the 
distributive identity of the propositional calculus : 

which is a law in classical, but not in quantum mechanics. 

The following point should be mentioned in order to avoid misunderstanding: If a, b 
are two physical qualities, then a IJb, a n  b and a' (cf. below) are physical qualities too (and 
so are 0 and I+).But a C b is not a physical quality; it is a relation between physi- 
cal qualities. 
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From an axiomatic viewpoint, each half of L6 implies the other.'g Further, 
either half of L6, taken with L72, implies L71 and L73, and to assume L6 and 
L72 amounts to assuming the usual definition of a Boolean algebra.z0 

From a deeper mathematical viewpoint, L6 is the characteristic property of 
set-combination. More precisely, every "field" of sets is isomorphic with a 
Boolean algebra, and conver~ely.~~ This throws new light on the well-known 
fact that the propositional calculi of classical mechanics are Boolean algebras. 

I t  is interesting that L6 is also a logical consequence of the compatibility of the 
observables occurring in a, b, and c. That is, if observations are made by inde- 
pendent observers, and combined according to the usual rules of logic, one can 
prove L1-L4, L6, and L71-74. 

These facts suggest that the distributive law may break down in quantum 
mechanics. That it does break down is shown by the fact that if a denotes the 
experimental observation of a wave-packet fi on one side of a plane in ordinary 
space, a' correspondingly the observation of fi on the other side, and b the obser- 
vation of fi in a state symmetric about the plane, then (asone can readily check) : 

b f l ( a U a l )  = b f l U = b > Q = ( b f l a ) =  ( b n a l )  

= (b  t l  a) U (b n a') 

REMARK:In connection with this, it is a salient fact that the generalized 
distributive law of logic : 

breaks down in the quotient algebra of the field of Lebesgue measurable sets by 
the ideal of sets of Lebesgue measure 0, which is so fundamental in statistics and 
the formulation of the ergodic p r in~ ip le .~~  

11. The modular identity. AIthough closed linear subspaces of Hilbert 
space and Cartesian n-space need not satisfy L6 relative to set-products and 
closed linear sums, the formal properties of these operations are not confined to 
L1-L4 and L71-L73. 

In particular, set-products and straight linear sums are knownz3 to satisfy the 
so-called "modular identity." 

l Q  R. Dedekind, "Werke," Braunschweig, 1931, vol. 2, p. 110. 
G. Birkhoff, "On the combination of subalgebsas," Proc. Camb. Phil. Soc. 29 (1933), 

441-64, 0023-4. Also, in any lattice satisfying L6, isomorphism with respect to  inclusion 
implies isomorphism with respect to  complementation; this need not be true if L6 is not 
assumed, aa the lattice of linear subspaces through the origin of Cartesian n-space shows. 

M. H. Stone, "Boolean algebras and their application to topology," Proc. Nat. Acad. 20 
(1934), 197-202. 

A detailed explanation will be omitted, for brevity; one could refer to work of G. D. 
Birkhoff, J. von Neumann, and A. Tarski. 

2a G.Birkhoff, op. cit., $28. The proof is easy. One first notes that  since a C (a U b) flc 
if a C c, and b n c C (a U b) n c in any case, a U (b 17 c) C (a U b) flc. Then one notes 
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L5: If a C c ,  thena U (b fl c) = (a U b) fl c. 

Therefore (since the linear sum of any two finite-dimensional linear subspaces of 
Hilbert space is itself finite-dimensional and consequently closed) set-products 
and closed linear sums of the finite dimensional subspaces of any topological 
linear space such as Cartesian n-space or Hilbert space satisfy L5, too. 

One can interpret L5 directly in various ways. First, it is evidently a re- 
_ stricted associative law on mixed joins and meets. It can equally well be re- !: garded as a weakened distributive law, since if a C c, then a U (b n c) = 

: ( a n  C) U (b n c ) a n d ( a U  b) n c =  ( a U  b) n ( a U  c). Anditisself-dual: 
replacing C ,  n ,  U by 3,U , n merely replaces a, b, c, by c, b, a. 

illso, speaking graphically, the assumption that a lattice L is "modular" 
(i.e., satisfies L5) is equivalent to2* saying that L contains no sublattice iso- 
morphic with the lattice graphed in fig. 1: 

Thus in Hilbert space, one can find a counterexample to L5 of this type. 
Denote by £1, £ 2 ,  .5, - .  . a basis of orthonormal vectors of the space, and by 
a, b, and c respectively the closed linear subspaces generated by the vectors 
(£zn+ + 10-2nbn+l), by the vectors b,, and by a and the vector t l .  
Then a, b, and c generate the lattice of Fig. 1. 

Finally, the modular identity can be proved to be a consequence of the assump- 
tion ihat there exists a numerical dimension-function d(a), with the properties 

D l  : If a > b, then d(a) > d(b). 

D2: d(a) + d(b) = d(a n b) + d(a U b). 


This theorem has a converse under the restriction to lattices in which there is a 
finite upper bound to the length n of chainsz6 @ < al < a2 < - . . < a, < 0of 
elements. 

Since conditions Dl-D2 partially describe the formal properties of prob-
ability, the presence of condition L5 is closely related to the existeye of an 

that any vector in (a U b) n c can be written [ = a + 6 [a c a, 6 c b, E r c]. But 6 = 'E - a 
isinc(einceE c c a n d u  c a c c ) ;  h e n c e [ = u + B  e a U ( b n c ) ,  and a U ( b n c )  3 ( a U b ) n c ,  
completing the proof. 

Z4R. Dedekind, "Werke," vol. 2, p. 255. 
16 The statements of this paragraph are corollariee of Theorem 10.2 of G .  Birkhoff, 

op. cit. 
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I I a priori thermo-dynamic weight of states." But i t  would be desirable to 
interpret L5 by simpler phenomenological properties of quantum physics. 

12. Relation to abstract projective geometries. We shall next investigate 
how the assumption of postulates asserting that the physical qualities attrib- ' 

utable to any quantum-mechanical system Q are a lattice satisfying L5 and 
L71-L73 characterizes the resulting propositional calculus. This question is 
evidently purely algebraic. 

We believe that the best way to 'find this out is introduce an assumption 
limiting the length of chains of elements (assumption of finite dimensions) of 
the lattice, admitting frankly that the assumption is purely heuristic. 

I t  is known% that any lattice of finite dimensions satisfying L5 and L72 is the 
direct product of a finite number of abstract projective geometries (in the sense 
of Veblen and Young), and a finite Boolean algebra, and conversely. 

REMARK: I t  is a corollary that a lattice satisfying L5 and L71-L73 possesses 
independent basic elements of which any element is a union, if and only if it is a 
Boolean algebra. 

Again, such a lattice is a single projective geometry if and only if i t  is irre- 
ducible-that is, if and only if i t  contains no "neutral" elements.= x #  @, 0 
such that a = (a n x) U (a n x') for all a. In actual quantum mechanics such 
an element would have a projection-operator, which commutes with all projec- 
tion-operators of observables, and so with all operators of observables in general. 
This would violate the requirement of "irreducibility" in quantum mechanic^.^^ 
Hence we conclude that the proposilionul calculus of quantum mechanics has the 
same strudure asan abstract projective geometry. 

Moreover, this conclusion has been obtained purely by analyzing internal 
properties of the calculus, in a way, which involves Hilbert space only indirectly. 

13. Abstract projective geometries and skew-fields. We shall now try to 
get a fresh picture of the propositional calculus of quantum mechanics, by 
recalling the well-known two-way correspondence between abstract projective 
geometries and (not necessarily commutative) fields. 

Namely, let F be any such field, and consider the following definitions and con- 
structions: n elements xl, . . . ,x, of F, not all = 0, form a right-ratio [XI:. . . :x,], , 
two right-ratios [xl: . . . :x,lr, and [[I: . - . :[,I, being called "equal," if and only 
if a z r F with b = x,z, i = 1, - . . , n, exists. Similarly, n elements yl, . . . ,y, 
of F, not all = 0, form a left-ratio [yl: . . . :y,]~, two left-ratios [yl: . . :y,]r 
and [ql: . . . :q,], being called "equal," if and only if a z in F with q i  = zyi, 

Ui = 1, . . . ,n, exists. 

"G. Birkhoff "Combinatorial relations in  projective geometries," Annals of Math. 36 
(1935), 743-8. 

27 0.ore, op. cit., p. 419. 
Ueing the terminology of footnote," and of loc. cit. there: The ring M M ;  should con- 

tain no other projection-operators than 0, 1,  or: the ring M must be a "factor." Cf. lop. 
cit.l;, p. 1%. 
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Now define an n - 1-dimensional projective geametry P,-1(F) as follows: 
The "points" of Pn-l(F) are all right-ratios [XI:. . . :xn],. The "linear sub-
spaces" of Pm-l(F) are those sets of points, which are defined by systems of 
equations 

(m = 1,2, . . . , the c r k i  are fixed, but arbitrary elements of F). The proof, that 
this is an abstract projective geometry, amounts simply to restating the basic 
properties of linear dependen~e.~g 

The same considerations show, iha t  the (n - %dimensional) hyperplanesoin 
Pm-1(F) correspond to m = 1, not all cri = 0. Put crli = yi, then we have 

This proves, that the (n - 2-dimensional) hyperplanes in Pm-1(F) are in a one- 
to-one correspondence with the left-ratios [y,: . .. :y,]l. 

So we can identify them with the left-ratios, as points are already identical 
with the right-ratios, and (*) becomes the definition of "incidence" (point C 
hyperplane). 

Reciprocally, any abstract n - 1-dimensional projective geometry Q,-1 with 
n = 4, 5, . . . belongs in this way to some (not necessarily commutative field 
F(Q,-l), and Q,-1 is isomorphic with P,-l(F(Qn-l)).m 

14. Relation of abstract complementarity to involutory anti-isomorphisms in 
skew-fields. We have seen that the family of irreducible lattices satisfying L5 
and L72 is precisely the family of projective geometries, provided we exclude the 
two-dimensional case. But what about L71 and L73? In other words, for 
which Pn-l( t )  can one define complements possessing all the known formal 
properties of orthogonal complements? The present section will be spent in 
answering this que~t ion ."~  

2 g  Cf. 55103-105 of B. L. Van der Waerden's "Moderne Algebra," Berlin, 1931, Vol. 2. 
a0 n = 4,5; .. . means of couree n - 1 2 3, that  is, that  Qn-l is necesearily a "Desargue- 

sian" geometry. (Cf. 0.Veblen and J. W. Young, "Projective Geometry," New York, 1910, 
Vol. 1,page 41). Then F = F(Q,-1) can be constructed in the classical way. (Cf. Veblen 
and Young, Vol. 1, pages 141-150). The proof of the isomorphism between Q,-I and the 
P,-l(F) as constructed above, amounts to  this: Introducing (not necessarily commutative) 
homogeneous coordinates X I ,  . . . , 2, from F i n  Q,-,, and expressing the equations of hyper- 
planes with their help. This can be done in the manner which is familiar in projective 
geometry, although most books consider the commutative ("Pascalian") case only. D. 
Hilbert, ''Grundlagen der Geometrie," 7th edition, 1930, pages 96-103, considers the non- 
commutative case, but for affine geometry, and n - 1 = 2, 3 only. 

Considering the lengthy although elementary character of the complete proof, we pro- 
pose to publish it  elsewhere. 

3On R ,  Brauer, " A  ch~racte~zationnull systems in projective space," Bull. Am. Math.of 
Soc. 42 (1936), 247-54, treats the analogous question in the opposite case that  X n X' 
# 8 is postulated. 



First, we shall show that it is s u m e n t  that F admit an involutory antiso-
morphism W: 2 = W(x), that is : 

with a definite diagonal Hermitian form w(xl) y f I + .. . + ~ ( x , )y, f n  ,where 

Q4. w(xl)ylxl + .. . + w(x,)ynxn = 0 implies XI = . . . = x, = 01 

the ri being fixed elements of F, satisfying ~ ( y i )= T i .  

Proof: Consider ennuples (not right- or left-ratios!) x: (XI, . .. , x,), 5: 
([I, . .. ,5,) of elements of F. Define for them the vector-operations 

xz: (xlz, .. . ,xnz) (Z in F) ,  

and an "inner product" 

Then the following formulas are corollaries of Ql-Q4. 

IP1 (x, 0 = w((f1 XI), 
IP2 (5, XU) = (€9 ~ ) u 1  (fu1 X) = w(u)(f1 x), 
IP3 (5, x' + xu) = (5, x') + (5, xu), (5' 4- f", X) = (5') (5", x), 
IP4 (x, x) = w((x, x)) = [XI is # 0 if x # 0 (that is, if any xi # 0). 

We can define x I f (in words: "x is orthogonal to f") to mean that (6 , x) = 0. 
This is evidently symmetric in x, f ,  and depends on the right-ratios [xl: .. . :x,],, 
[FI:. . :[,Ir only SO it establishes the relation of "polarity," a I b, between the 
points 

a: [xl:. . .:x,],, b: [ f l : .  . . :fn], of P,-I(F). 

The polars to any point b: [El: .:f,], of Pn-l(F) constitute a linear subspace 
of points of P,l(F), which by Q4 does not contain b itself, and yet with b gener- 
ates whole projective space P,-1(F), since for any ennuple x: (xl, . .. ,x,) 

x = 2' + f.[fl-'(f, 5) 

where by Q4, [[I # 0, and by IP (5, 3') = 0. This linear subspace is, therefore, 
an n-2-dimensional hyperplane. 

~ e n c kif c is any-k-dimensional element of Pn-l(F) one can set up inductively 
k mutually polar points b('), . .. ,bck) in c. Then i t  is easy to show that the set 
c' of points polar to every b'l), .. . ,b(l)--or equivalently to every point in c- 
constitute an n-k-l-dimensional element, satisfying c n c' = @ and c U c' = 0. 
Moreover, by symmetry (c')' 3 c, whence by dimensional considerations 
c" = c. Finally, c 3d implies c' C d', and so the correspondence c +c' defines 
an involutory dual automorphism of PnF1(F) completing the proof. 
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In the Appendix it will be shown that this condition is also necessary. Thus 
the above class of systems is exactly the class of irreducible lattices of finite 
dimensions > 3 satisfying L5 and L71-L73. 

15. Mathematical models for propositional calculi. One conclusion which 
can be drawn from the preceding algebraic considerations, is that one can 
construct many different models for a propositional calculus in quantum me- 
chanics, which cannot be differentiated by known criteria. More precisely, one 
can take any field F having an involutory anti-isomorphism satisfying Q4 (such 
fields include the real, complex, and quaternion number systems31), introduce 
suitable notions of linear dependence and complementarity, and then construct 
for every dimension-number n a model P,(F), having all of the properties of the 
propositional calculus suggested by quantum:mechanics. 

One can also construct infinite-dimensional models P,(F) whose elements 
consist of all closed linear subspaces of normed infinite-dimensional spaces. But 
philosophically, Hankel's principle of the "perseverance of formal laws" (which 
leads one to try to preserve L5)32 and mathematically, technical analysis of 
spectral theory in Hilbert space, lead one to prefer a continuous-dimensional 
model P,(F), which will be described by one of us in another paper.33 

P,(F) is very analogous with the model furnished by the measurable subsets 
of phase-space in classical dynamics.34 

16. The logical coherence of quantum mechanics. The above heuristic 
considerations suggest in particular that the physically significant statements in 
quantum mechanics actually constitute a sort of projective geometry, while the 
physically significant statements concerning a given system in classical dynamics 
constitute a Boolean algebra. 

They suggest even more strongly that whereas in classical mechanics any 
propositional calculus involving more than two propositions can be decomposed 
into independent constituents (direct sums in the sense of modern algebra), 
quantum theory involves irreducible propositional calculi of unbounded com- 
plexity. This indicates that quantum mechanics has a greater logical coherence 

81 In the real case, w(z) = z ;  in the complex case, w(z + iy) = z - iy; in the quaternionic 
case, w(u + i z  + jy + kz) = u - i z  - jy - kz; in all cases, the A, are 1. Conversely, A. 
Kolmogoroff, "Zur Bependung der projektiven Geometrie," Annals of Math. Q (1932), 175-6 
has shown that  any projective geometry whose k-dimensional elements have a locally 
compact topology relative to  which the lattice operations are continuous, must be over the 
real, the complex, or the quaternion field. 

82 L5 can also be preserved by the artifice of considering in P,(F) only elements which 
either are or have complements which are of finite dimensions. 

J. von Neumann, "Continuous geometries," Proc. Nat. Acad., 22 (1936), 92-100 and 
101-109. These may be a more suitable frame for quantum theory, than Hilbert space. 

In quantum mechanics, dimensions but not complements are uniquely determined by 
the inclusion relation; in classical mechanics, the reverse is true! 
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than classical mechanics-a conclusion corroborated by the impossibility in 
general of measuring different quantities independently. 

17. Relation to pure logic. The models for propositional calculi which 
have been considered in the preceding sections are also interesting from the 
standpoint of pure logic. Their nature is determined by quasi-physical and 
technical reasoning, different from the introspective and philosophical considera- 
tions which have had to guide logicians hitherto. Hence i t  is interesting to com- 
pare the modification~ which they introduce into Boolean algebra, with those 
which logicians on "intuitionist" and related grounds have tried introducing. 

The main difference seems to be that whereas logicians have usually assumed 
that properties L71-L73 of negation were the ones least able to withstand a 
critical analysis, the study of mechanics points to the distributive identities L6 as 
the weakest link in the algebra of logic. Cf. the last two paragraphs of 510. 

Our conclusion agrees perhaps more with those critiques of logic, which find 
most objectionable the assumption that a' U b = [I implies a C b (or dually, 
the assumption that a I7 b' = 0implies b 3 a-the assumption that to deduce 
an absurdity from the conjunction of a and not b, justifies one in inferring that 
a implies b) .a6 

18. Suggested questions. The same heuristic reasoning suggests the follow- 
ing aa fruitful questions. 

What experimental meaning can one attach to the meet and join of two given 
experimental propositions? 

What simple and plausible physical motivation is there for condition L5? 

1. Consider a projective geometry &,-I as described in 513. F is a (not neces- 
sarily commutative, but associative) field, n = 4, 5, . . . , = Pn-l(F) the 
projective geometry of all righeratios [xl:. . . :xn],, which are the points of 
&,-I. The (n  - 2-dimensional) hyperplanes are represented by the left-ratios 
[yI: - . . yn]r, incidence of a point [XI: . . . x,], and of a hyperplane [yl: . . :y,]l 
being defined by 

All linear subspaces of &,-I form the lattice L, with the elements a, b, c, . . 
Assume now that an operation a' with the properties L71-L73 in 59 exists: 

L71 (a')' = a 

L72 a n a' = 0and a U a' = [I, 

L73 a C b implies a' 3, b'. 


35 It is not difficult to show, that assuming our axioms Ll-5 and 7, the distributive law 
L6 is equivalent to this postulate: a' U b = u implies a C b.  
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They imply (cf. 59) 

L74 (a n b)' = a' U b' and (a U b)' = a' n b'. 

Observe, that the relation a C b' is symmetric in a, b, owing to L73 and L71. 

2. If a: [XI:. . :x,], is a point, then a' is an [yl: .. yn]!. So we may write: 

and define an operation which connects right- and left-ratios. We know from 
514, that a general characterization of a' (a any element of L) is obtained, as 
soon as we derive an algebraic characterization of the above [XI: . - . :xn]: . 
We will now find such a characterization of [XI: .. :xn]:, and show, that it  
justifies the description given in $14. 

In order to do this, we will haveto make a rather free use of collineations in 
A collineation is, by definition, a coordinate-transformation, which 

. replaces [XI : .. :x,], by [21: . . :Z,], , 

Here the wi, are fixed elements of F, and such, that (3) has an inverse. 

for i  =.I, . - . , n ,  

the eijbeing fixed elements of F, too. (3), (4) clearly mean 

Considering (1)and (5) they imply the contravariant coordinate-transformation 
for hyperplanes: [yl: . :y,]~ becomes [gl:. . :gn]l, where 

n 

. - agi = c ?A eii , f o r j  = 1, ,n, 
i - 1  

for i = 1, ... ,n. 

(Observe, that the position of the coefficients on the left side of the variables in 
(4), (5), and on their right side in (6), (7)) is essential!) 

3. We will bring about 

(8) [6il:...:6i,]: = [6il:...:6in]1 for i = 1, .. . ,n, 
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by choosing a suitable system of coijrdinates, that is, by applying suitable col-
lineations. We proceed by induction: Assume that (8) holds for i = 1, .. a , 
m - l(m = 1, - . - ,n), then we shall find a collineation which makes (8) true for 
i =  1, . . .  ,m. 

Denote the point [ail: ...:6in]r by pf, and the hyperplane [&I:. . :6in] by 
hf our assumption on (8) is: pf' = hf for i = 1, .. ,m - 1. Consider now a 
point a: [XI:- .:x,],, and the hyperplane a': [yl:.. .:y,]l. Now a 5 pf' = hf 
means (use (1)) xi = 0, and p: 5 a' means (use (8)) yi = 0. But these two 
statements are equivalent. So we see: If i = 1, . .. ,m - 1, then xi = 0 and 
yi = 0 are equivalent. 

Consider now p:: [am1:. .. :6,,],. Put p:: [y::. ..:y,*]l. As = 0 for 
i = 1, . . .  ,m - 1,so we have yf = 0 for i = 1, . .. ,m - 1. Furthermore,* * 
p, r) p,' = 0, pf # 0, so p: not 5 p?. By (1) this means y: # 0. 

Form the collineation (3), (4), (6), (7), with 
*-I *eii = 1) emi = wi, = y, yi for i = m + 1, ... ,n, 

d l  other Bij, oij = 0. 
One verifies immediately, that this collineation leavea the coijrdinates of thepi: [6n:...:6idr, i = 1, . - ., n, invariant, and similarly those of the 

pi1: [an: . .  :6im]l,i = 1, .. . m - 1,while it t rapsfom those of 

into [6,1: .. . :6,,]1. 
So after this collineation (8) holds for i = 1, ... ,m. 
Thus we may sssume, by induction over m = 1, ... ,n, that (8) holds for all 

i = 1, . ,n. This we will do. 
The above argument now shows, that for a: [XI:...:z,], , a' : [yl: ...:y,]l, 

4. Put a:[zl:...:zn],,a':[yl:...:yn]l, and b:[tl:...:tn],,b':[rll:...:qn] l .  

Assume Grst 71 = 1, 71 = 7, qs = ... = 7, = 0. Then (9) gives t1 # 0, so 
we can normalize t1 = 1, and h = ... = t n  = 0. 5 2  can depend on 72 = 7 
only, so 52 = ji(?). 

Assume further XI = 1. Then (9) gives yl # 0, so we can normalize yl = 1. 
Now a 5 b' means by (i) 1 + 7x2 = 0, and b 5 a' means 1 + yz j2(7) = 0. 
These two statements must, therefore, be equivalent. So if xt # 0,we may put 
7 = - zhl, and obtain y2 = - (j2(7))-l = - ( f2(- zt-I))-'. If x2 = 0, then 
yt = 0 by (9). Thus, z2 determines at  any rate yt (independently of 
%a, - . - ,2,) :yz = q~z(x2). Permuting the i = 2, ... ,n gives, therefore: 

There exists for each i = 2, ... , n a function such that yi = q~i(z~). 
Or: 

(10) I f a :  [l:x~:...:z,],, thena': [l:q~~(z~):...:q~,,(x~)]l. 



840 GARRETT BIRKHOFF AND JOHN VON NEUMANN 

Applying this to a: [l:z2: .. .:z,], and c: [l:ul:. .. :u,], shows: As a S c' 
and c S a' are equivalent, so 

(11) 2 ~ i ( % )G = - 1is equivalent to 2 p(zi) ui = - 1. 
i - 2  i - 2  

Observe, that (9) becomes: 

(12) cpi(z) = 0 if and only if z = 0. 

5. (11) with zs = . . . = z, = us = . . . = u, = 0 shows: cp2(u2)z2 = - 1 
is equivalent to cp2(z2)u2 = - 1. If z2 # 0, u2 = (--(p2(~2))-', then the second 
equation holds, and so both do. 

Choose 2%,u2 in this way, but  leave 2 8 ,  . . . ,z, ,u,, . . . u, arbitrary. Then 
(11) becomes: 

(13) ' fd u i )  zi = 0 is equivalent to f (pi (xi) ui = 0. 

cpa(~s)zs+ cpr(~4)za= 0 is equivalent to cps(zs)us + (p4(~4)U4= 0, 

that is (for zr ,u4 # 0) : 

(14) is equivalent to 

Let z4, zs be given. Choose u,, u4 so as to satisfy (b). Then (a) is true, too. 
Now (a) remains h e ,  if we leave US,  u4 unchanged, but change 2 3 ,  z4 without 
changing zsz~ ' .  So (b) remains too true under these conditions, that is, the 
value of cpr(zr)-' (ps(zs) does not change. In other words :(pr(z4)-1 (ps(za) depends 
on zsz4-' only. That is: (p4(~4)-' $93(~3) = cps1(z3z~1). Put z8 = W,z4 = z, 
then we obtain : 

This was derived for z, z # 0, but it will hold for z or z = 0, too, if we define 
$84(0) = 0. (Use (12).) 

(15)) with z = 1gives cpa(z) = (p4(z)aa4, where a 3 4  = #s4(l) # 0, owing to 
(12) for z # 0. Permuting the i = 2, . . . ,n gives, therefore: 

(Fori = j p u t a i i  = 1.) 

Now (15) becomes 
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Put z = 1in (17))write z for z, and use (16)with j = 2:  

6. Compare (17) for z = 1, z = u ;  z = u,  z = v ; and z = 1,z = vu. 
Then 

results (12) and (18) give 

(20) w(u) = 0 if and only if u = 0. 

Now write w(z), r ; for j3w(z)P1, Br;. Then (18)) (19)) (20) remain true, (18) 
is simplified in so far, as we have j3 = 1 there. So (11) becomes 

(21) is equivalent to 

z2 = z, us = u and all other z ;  = u i  = 0 give: w(u)r2z*= -1 is equivalent to 
w(z)rzu = -1. If z # 0, u = - r y l  w(z)-1, then the second equation holds, 
and so the first one gives : z = -ry '  w(u)-I = -7;' (w(-~,'w(x)-I))-'. But 
(19), (20) imply w(1) = 1, w(w-') = w(w)-1, so the above relation becomes: 

Put herein z = 1, as w(w(1)) = w(1) = 1, so -r;'w(-r2) = 1, w(-72) = -7% 
results. Thus the above equation becomes 

and w ( - y ~ )= - 7 2  gives, if we permute the i = 2, .. . ,n, 
(23) w(-7;) = -7;. 

Put ui = -77' in (21). Then considering (22) and (19) 

(24) 2 2 = 1 is equivalent to f:w ( y )  = 1 
i - 2  i = 2  

obtains. Put za = z, = y, z4 = 1 - z - y, zr = . . = z, = 0. Then (24) 
gives w(z) + w(y)  = 1 - w ( l  - z - y). So w(z) + w(y) depends on z + y 
only. Replacing z, y by z + y, 0 shows, that it is equal to w(z + y)  + w(0) = 
w(z + y)  (use 20). So we have: 
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(25))(19) and (22) give together: 

Observe, that (25) implies w( -1) = -w(1) = -1, and so (23)becomes 

7. Consider a :  [ X I :  . . :zn],,a': [yl: .. :ynIl. If z l  # 0 ,  we may write 
CT: [ 1 : ~ 2 ~ 1 ' :  : ~ n ~ 1 l ] , ,and SO a': [l:w(zzzT1)yz: : w ( ~ , z ~ ' ) y ~ ] ~ .But 

w ( x ~ x ~ ' ) ~ ~= w ( x ~ ' ) w ( x ~ ) ~ ~= W ( X ~ ) - ' W ( X ~ ) ~ ~ ?  

and so we can write 

a': XI) :w(zz)yz: .. :w(~,)y,]r 

too. So we have 

where the yi for i = 2, . ,n are those from 6., and yl = 1. And w(1) = 1, 
so (26) holds for all i = 1, . ,n. So we have the representation (27) with y;  
obeying (26))if xi # 0.  

Permutation of the i ,= 1, .. ,n shows, that a similar relation holds if x2 # 0 :  

w+(z) being an involutory antisomorphism of F. (w+(z),y t  may differ from 
w ) ,  ! ) Instead of 71 = 1 we have now y: = 1,but we will not use this. 

Put all X i  = 1. Then a' : [yl:...:y,]Z can be expressed by both formulae 
(27)and (27+). As w(z)lw+(z)are both antisomorphism, so w(1) = w+(l) = 1, 
and therefore [yl:...:y,]~ = [yl:  . :y,]Z = [ y f :...:y:Il obtains. ' Thus 

+ -1 + + 
( 7 1 )  yi = ( ~ l ) - ~ y i= T i ,  ~i = y f y ; f o r  i = 1, ... ,n. 

Assume now zp # 0 only. Then (27+) gives yi = w+(zi)y?, but as we are 
dealing with left ratios, we may as well put 

Put  p = y f  # 0 ,  then we have: 

Put now zl  = z2 = 1, zs = ,z,all other xi  = 0.  Again a': [yl:.. .:yn]zcan be 
expressed by both formulae (27) and (27*), again w(1) = w+(l).  Therefore 

[ Y ~ : Y ~ : Y J : Y ~ : .. :Y.]Z = [ Y ~ : Y ~ : w ( x ) ~ ~ : O : .. :O]r 

= [yl:y2:j9+-1w+(z)p+yJ:O:. . . :O]z 

obtains. This implies w(z )  = @+lw(z)@+ for all x, and so (27*) coincides with 
(27). 



I n  other words: (27) holds for xz # 0 too. 

Permuting i = 2, . . . ,n (only i = 1has an exceptional r6le in (27)), we see: 


(27) holds if xi # 0 for i = 2, .. . ,n. For xl # 0 (27) held anyhow, and for 
some i = 1, .. . ,n we must have xi # 0. Therefore: 

(27) holds for all points a : [XI:.'..:xn]r. 

8. Consider now two points a: [xl: . .. :x,], and b: [El:. .. :f,],. Put  
a': [yi:. .. :gn]l, then b $ a' means, considering (1) and (27) (cf. the end of 7.): 

a 5 a' can never hold (a n a' = 0, a # 0), so (28) can only hold for xi = t ,  
if dl xi = 0. Thus, 

n
,xw(xi)yig = 0 implies xl = .. . = xn = 0. 
i-1 

Summing up the last result of 6., and formulae (26), (29) and (28), we obtain: 
There exists an involutory antisomorphism w(x) of F (cf. (22), '(25), (19)) and a 

n 

dejinite diagonal Hemitian form w(xi)yi ti in F (cf. (26), (29)), such that for 
i - 1  

a : [XI:.. .:x,], ,b: [El :.. . :En], b 5 a' is defined by polarity with respect to it: 

This is exactly the result of $14, which is thus justified. 


