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Wave Functions of Many-Electron Atoms. By J. E. LENNARD-
JONES, Ph.D., University of Bristol.

[Received 21 May, read 27 July 1931.]

1. The wave function of an atom containing many electrons has
not yet been solved completely, even that of helium being as yet
unknown. In the absence of a direct solution of the Schrb'dinger
equation for the electrons in an atom, various attempts have been
made to devise approximate methods of solution in particular cases.
The particular case of helium, being the easiest, has received con-
siderable attention and a number of approximate wave functions
appropriate to the normal state have been constructed*. These
functions usually contain empirical constants which are adjusted to
make the energy of the system a minimum. Zenerf has attempted
the more ambitious programme of finding the wave functions of all
the atoms in the first period of the Periodic Table (Lithium to
Neon), and has made interesting discoveries as to the way in which
the wave functions differ from atom to atom. This work also is
based on the variation of parameters.

A different method has been developed by Hartree:}:, which is
equivalent to ascribing a definite orbit or state to each electron of
the atom, consistent with the Exclusion Principle. Equations are
constructed for each electron and solved numerically so as to make
the distribution of charge in the atom reproduce the potential field
already assumed. This method (the method of self-consistent fields)
has been worked out for many atoms and has led to pictures of the
charge distribution which have been extremely valuable in many
physical problems. Fock has, however, shown that the Hartree
equations are not really accurate since they neglect the important
principle that electrons are identical and that interchanges may
occur. This "exchange effect" leads to the introduction of new
terms in the equations, as Fock§ and Dirac|| have shown. Fock uses
the Euler variation equation, to which the Schrodinger equation is
equivalent, and, having assumed wave functions of the right sym-
metry properties, substitutes in the variation equation and thereby
derives a system of linear differential equations, to which the

v i* a?y U e?fn
8 ' ZaiU' *' Phy>ik> Vo1- 54> P- 3*7 (1929); Slater, Physical Review,Vol. 32, p< 349 (1928)*

t Zener, Physical Review, VoL 36, p. 51 (1930); of. also Slater, Phyrical
Smew, Vol. 36, p. 57 (1930).

X Hartree, Proc. Camb. Phil. Soc, Vol. 24, pp. 89, 111 (1928).
§ Fock, ZeiU.f. Phyiik, Vol. 61, p . 126 (1930).
II Dirac, Proc. Camb. Phil. Soc, Vol. 26, p. 376 (1930).
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Hartree equations are first approximations. Fock's method of
deriving these equations is, however, not very attractive, and the
object of this paper is to show that they can be obtained more
briefly and elegantly by using the spin coordinates as well as the
space coordinates.

2. The Schrodinger equation in atomic coordinates! for a
nuclear charge N is

I W (2-01),

where # , = - ( £ ) V / - JV/r, (2'02).

One method of approximating to the solution of this equation is to
choose another one which can be solved and use it as a basis for
solving the actual equation. Let us suppose that an equation can
be found of the type

| 2 Hj* - # W = 0 (2-03),

where #}* = - ( £ ) V / - ^ (2-04)

and Vj is a function of the jth set of coordinates alone. Then the
equation (2*03) is separable and its solution can be expressed in
terms of the solutions of

( £ 0 * - e ) ^ = 0 (2-05),

which is an equation in the space coordinates of the jth electron
alone.

Let the functions ^i(J),^z(j), ••• be the solutions of the equa-
tion, where j is written for short for the space coordinates of the^'th
electron. These functions form an orthogonal set and may be taken
to be normalised. Then a solution of (2"03) is of the type

(2-06),

where ^ o , ^ , . . . are any members of the set of solutions of (2"05)
and the coordinates of electrons 1, 2,... are substituted in them.
The corresponding energy is

E = ea + ep+...+eK+... + € (2-07).

There are many other wave functions like ^ , with the same
energy E, as is easily seen by permuting the coordinates 1, 2,

With each solution of equation (2*05) we may associate one or
other of the two wave functions in the spin coordinate. These may

t Unit of length equals the radius of the hydrogen Bohr orbit, and unit of energy
equals twice that of normal hydrogen.



Dr Lennard- Jones, Wave functions of many-electron atoms 471

be denoted by a {a) and /S {a), the coordinate a taking only the two
values ±\. These functions may be taken to be orthogonal and
normalised so that

2a(<r)/3(<x) = 0, Sa(0-)a(a-) = 2/8(tr)y9(<r)=l ...(2-08).

The solutions of (2-05) may now be written as fa, fa, ..., the
set containing twice as many as before, and still preserving the
orthogonal property. Any member of the set, such as fa, consists
of a product such as i/r«a or i/r«/3. A wave function of (2*03) is
now

®=fa(l)fa(2)...fa(k)...fa(N),
with the same energy as given by (2*07). Any linear expansion of
the wave functions of this type, which have the same energy, is also
a solution of equation (2*03). A wave function which incorporates
the Exclusion Principle and the Principle of Identity of Electrons,
as has been shown by Dirac* and used successfully by Slaterf, is

* = Detft .(1)fo(2). . .*,(#)}, (2-09),

the determinant containing fa(l)fa(2)... <f>,(N) as its leading
term. This wave function is antisymmetric in the coordinates and
no two of the functions fa,, fa,... are the same.

SlaterJ has shown that a wave function written in this way to
include space and spin coordinates alike has many advantages over
wave functions constructed in the space coordinates and the spin
coordinates separately as has been the general practice. In par-
ticular it avoids many applications of the group theory, which were
a necessary and unpleasant consequence of this method of attack.

It often happens that there are several such wave functions with
the same energy. The excited states of a two-electron atom provide
a simple example. Thus we may have

" * h

for since equation (203) does not contain the spin coordinates the
latter have no influence on the energy to this approximation. All
four have an energy E— em + en.

The degeneracy, which thus exists in such cases, is broken up
when a perturbation is applied to the electronic system. Equation

* Dirac, Proc. Boy. Soc., Vol. 112, p. 661 (1926).
t Slater, Phys. Review, Vol. 34, p. 1293 (1929).
t Slater, loc. cit.

(l)a(<71), ^r,(2)a (*

= Det [+m (1) a (<xx), * , (2) 0 (<
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(201), which corresponds to the real atom, may be regarded as a
perturbation of the artificial system (2"03), which up to now we
have been considering. The real wave functions can then be ex-
pressed (to a first approximation) as linear expansions of the
members of the degenerate set. Thus, in the two-electron atom, we
find the wave functions to be <E>i, <£>2 + <i>3, <J>4, each with the same
energy (lower than em + en) and <J>2 — *3 with an energy higher than
(ffl + en. The first three belong to the triplet set (ortho-helium) and
the latter to the singlet set (parhelium). These new wave functions
might be denoted by ill, il2, &3 and ^«-

The important point is that, by considering an artificial system,
we have arrived at wave functions of the real atom with definite
symmetry properties, though these functions are only approximate.
Three of the fl's are antisymmetrical in the space coordinates and
symmetrical in the spin coordinates, and vice versa for the fourth.
These same symmetry properties may be expected to hold in the
wave functions of a real atom, but we must no longer expect these
functions to be expressible in the same simple explicit form. They
may (and, in fact, probably do) contain as well the relative
coordinates of the electrons r12, rw, —

However, it will suffice for the present to suppose that the wave
functions of the atom can be expressed in the same form as the fl's.
The problem then is to determine the component functions of
which they are made up (yfrm etc.) so as to satisfy Schrodinger's
equation in the best possible way.

To sum up, we may say that an atomic system will give rise to
a series of multiplets, and the number of wave functions associated
with each energy level or state will be a measure of the multiplicity.
The symmetry properties of these wave functions may be obtained
from considerations of an artificial electron system such as that
given by equation (2 "03), and then wave functions of the real atom
may be constructed by analogy.

3. Once suitable wave functions have been constructed, their
actual determination may be made by the use of the variation
method, as Fock * does. The Euler variation equation corresponding
to the Schrodinger equation (2-01) is

\ J 2 (l/rjk)-E\ndT = 0 (3-01),

where the integration is taken over the four coordinates of each
electron. Now it may be shown that if

xii, n2,.. . nv

all belong to the same term, that is, have the same energy, the

* Fock, loc. cit.
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substitution of any one of them in equation (3'01) leads to the same
result*. In considering the triplet system of helium, for instance,
we may substitute either

or
D,3= yjrn

*m(2)/3(e

in the variation equation, and it will clearly be simpler to do so than
to use n2, which is a sum of two such determinants.

The theory of multiplets in atoms arising from a given con-
figuration of electrons in an artificial system such as (2'03) has been
worked out in a very elegant way by Slater-f-. He shows what had
already been established by vector models by Hund J, that the term
of greatest multiplicity is usually lowest in energy. What is of
greater interest from our point of view is that there are series of
wave functions n%,£li,... flv, of which the first and last can be
expressed as single determinants, while the rest consist of sums of
determinants. The configuration of the atom to which these two
determinants correspond is that of a number of closed shells with
electrons outside in different states or " orbits " but all having the
same spin. In such a case, the wave function can be written

where the first 1p columns alternate with a and @ spin, but the
last q — p columns have the same spin (either a or /3). It is probably
more convenient to re-arrange the determinant so that all the wave
functions of the same spin are together. Thus we may write

...(3-02).

By suitable linear combinations of the last p columns a set of
functions can be derived from yfri, ...,yfrp, which are orthogonal to
each other. The determinant XI will not be altered in the process
except perhaps by a numerical factor. Similar linear combinations
of the first p columns may then be made. Finally linear combina-

* Fock, loc. cit., § 5.
t Slater, loc. cit.
X Hund, Linienspektren u. periodiichee System der Elemente, Springer (1927).
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tions of the first p functions so derived and of the functions
V'p+i' •••'^rq c a n De found so that the first q columns of the deter-
minant contain functions which are mutually orthogonal. Since the
first q columns are orthogonal to the last p columns because of the
spin, every function in the determinant is orthogonal to every other
function. Nothing in the process of making the functions mutually
orthogonal has altered the fact that the first q columns have a spin
and the last p columns /8 spin. Clearly each function may be
normalised without altering the determinant except by a numerical
constant. So we may regard the set of functions contained in il to
be orthogonal and normalised. Such a wave function may be said
to be " prepared." The wave functions of nearly all atoms in their
normal state may be prepared in this manner.

4. The problem now is to determine the individual functions
of which a prepared wave function like XI is composed. By substi-
tuting in the variation equation (3-01) a number of linear differential
equations in three coordinates only may be obtained, instead of the
Schrodinger equation in its many coordinates, to which (3-01) is
equivalent.

Let the prepared wave function be

Det {ft (1) . . .

where the functions <f>i to <f>q contain an
h N

(4-01),

factor and thewhere the functions <f>i to <f>q contain an a-spin factor and
functions <f>g+1 to <f>N (where N=p + q) contain a /9-spin factor.

Substituting in equation (3"01) we find

P <*T. . . (4O2) ,

where

and

P (2 ,2) ... P(2,N)

p(N,l)p(N,2)...P(N,N)

p(l ,2)=l<

(403),

(4-04).

We have adopted the convention that Si operates only on the
coordinates of the ith electron when they appear in terms such as
p(i,j), but not in terms like p(j,i)-

Further, I 8tfr(i).<piU) (*'O5).
ii
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Similarly Hj operates only on p (t, j) and not on p (j, i) and

J) (4-06).i
Thus

fOP(i,i)=^

...(4-07).

The determinant p has many remarkable properties. It may be
integrated with respect to any of its variables with great ease. For
example, to integrate with respect to the coordinates of the iVth
electron, we note that these variables occur only in the last row and
column of the determinant. The determinant may easily be ex-
panded as a sum of terms each containing one element from the
last row and column. A typical term is p(i, N)p(N,j) multiplied
by minus the cofactor of p (i, j) in the minor of p (N, N). Now

j P (i, (4-08),

owing to the orthogonal properties of the <p'a, and by a known
theorem on determinants,

p(N, s-i-lip(i, N)p(N,j){cofactor of p(i,j) in pw_x}

(4-09),
where p#_i is the determinant obtained from p by omitting the
row and column. Hence

(4-10)

since (4-11),

because of the normal properties of the <£'s.
Similarly

w-idr^! = NpN_2- (N-

{pdTl

(413),

(414).
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A number of other properties of the determinant may be
demonstrated, though they must be omitted as they are not needed
in the present paper. A typical result may be quoted. If the factor
of the expression

in the determinant p is integrated over all the variables except
those of dTidrjdrkdri, the result is

when i, j , k and I are all unequal. When I = k the expression can
be integrated over the range of drlk and drt as well and the result

In view of the results (4-12)—(4'14) we may say that p is
integrable along the diagonal*. In the same way, it may be shown
that (SiH})p, when its rows and columns are suitably rearranged, is
integrable (^—2) times along the diagonal.

We thus find

= (N-2)!j8,

= (iV-2)!J(:

ip (iy i) dri \ Hjp (jyj) d,Tj

-(iV-2)!J"p(j>t)S<.

ZHmm)j$$n.+ndx- S H,

Hmn— WmStyndx ...

Sjp(i,j)di

....

mdx

..(4-15),

..(4-16).where

* In a paper which has just appeared {Proc. Camb. Phil. Soc. Vol. 27, p. 240
1931) Dirac gives a simple interpretation of the function p. The expression
pdr,...dry is the probability that an electron shall be found in dr,, another in
rfr2, ... and so on; in other words, it gives the probability of a specified configura-
tion. The probability of finding N-l electrons in a prescribed configuration
irrespective of the position of the Nth may therefore be obtained by integrating p
over the variables of the Nth electron, and is therefore p,v-i- The probability of
finding q of the electrons in prescribed elements of volume may be obtained by
integrating over the variables dT,+1...d7> in such a way that each configuration
appears only once. Thus the configuration q + l = (q + l)'t q + 2 = (q + 2)',...N=N',ppea

n o a
m u s t b e c o u n t e d a s t h e s a m e . T h e result i s j u s t p q .
a n d a n y p e r m u t a t i o n of (q + 1)', {q + 2)',...N' a m o n g t h e var iables q + l,q + 2,...N

• • i. Thei
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The special sign S is used to denote a summation over those pairs

of wave functions m and n, which have the same spin factor. Those
which have opposite spin factor are orthogonal and disappear on
integration over dr( and dr}. The ordinary summation 2, used in

m
(415) implies that m ranges over all values 1 to N irrespective of
spin factors. The integration of Hmn and those contained in (415)
are with respect to space coordinates only.

Similarly

lx (4-17),

so that

J \i J\j I nJ (, m \m I )
(4-18),

where /S(nl is a summation over all those yjr'a which are associated
m

with the same spin factor as >frn in fi.
Again

far*) pdr = (N-
p(k,k)

(4-19).

There are N (N — 1) (N — 2)/2 terms of this type, since the number
of pairs j , k with j> k is N(N—1)/2 and the number of ways of
choosing i to be different from either of them is N— 2. We thus
find

m,n

- 8(lm\G\ml)\
l,m )

(lm\G\ln)- S
ll,m,n

The summation 8 is over those sets of T/r-functions which are
l,m, n

associated with the same spin factor in the wave function fl, and
we have used the notation

(*X | G | fiv) - ... (421).
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The case of i=j or i = k can be dealt with similarly. The
result is

2 2 hSi/r{j) Pdr + Nl = fs^n^nV(x)dx-S \^n^mGmn(«)dx
ij&J J m,nJ

(4-22),
where Gmn(x) . fem(xl)^n{x')(\jr)dx' (4-23),

and V (x) = 2 Gnn(x) (424).
n

The right-hand side of equation (4*02) is easily found to be

Et [sipdr = (Nl)E'2 i$&n.-Jrndx (4-25),
i J n J

and from the Schrodinger equation (2-01), we find

ffj+ 2 llrfiSpdr* \pdr
j j>k I J

k,j) p(k,k)

= 2Hnn + £ 12 (Im| G|ml)- S(lm\G\ml)) ...(4-26).
re U,m l,m )

The variation equation (4-02) thus consists of a number of
differentials S^n and the factors of each can be equated separately
to zero. The result is a series of equations of the type

- <S<"» \Gmn (x) + Hmn + 2 (Im | G \ ln)\ ^m

= 0 (4-27),

where en is the number of times ifrn occurs in il, and may be either
1 or 2. These are the required equations for the functions ->frn.

Special Cases. When the atom consists of p pairs and q — p
outer electrons in dififerent states but possessing the same spin, then
•\/rB may be associated with either a-spin or yS-spin, when n < p. In
this case en = 2,

s<»> = I + i ,
m m = l m = l

V P Q Q

and S<"» = 2 2 + 2 2 .
l,m !=U=1 Z=ln» = l
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But when p<n<q, we have
9 9 9

e n = l , S ( n ) = 2 . S<»'=2 2 .

The asymmetry in Fock's resultsf is thus explained. Equation
^4*27) has the advantage of bringing both of them within the same
scheme.

Hartree's equations are obtained from (4'27) by neglecting
(i) the factors of every i/rm for which m 4= n and (ii) the non-diagonal
matrix elements (In | G | nl). The equation then becomes

\H + 2' Gnn (x)| +n(x) = j# n n + 2' (In | G| in)j- *„(»).
The term 2 ' (?„„ (a;) is the potential of the nth electron due to the

n
Coulomb fields of all the other electrons averaged over their re-
spective probability charge distributions; Hnn is the energy of the
nth electron in the field of the nucleus alone, and 1!(ln\G\ln) is
its energy due to the presence of all the other electrons. Hartree
has solved these equations numerically by assuming the fields
Gnn (x) to be spherically symmetrical, then by making an assump-
tion as to their form and adjusting them until the solutions of the
yfr's obtained reproduce the field. These solutions might be used
as a basis for the solution of the equations (4'27), but the disad-
vantage of the method is that the solutions can only be obtained
in a numerical form. Perturbation methods cannot be applied
because the excited states of the system would have to be found as
well and the arithmetical labour of doing so would be prohibitive.

Another method of attack is to find an equation which is
separable and which is yet a good representation of the actual
system. Suppose that Vn* (x) were such a potential and that

(H+Vn*-E),frn(x) = O (4-28)

could be solved completely (just as the hydrogen atom can be,
where Vn* — — 1/r), giving a set of wave functions i/rj, yfrm, yjrn,
These could then be substituted in equation (4*27) and

Vn*-2'Gnn(x) (4-29)
n

could be regarded as a perturbation of (4"28).
The assumed function Vn* (x) should approach N/r as r -*• 0 and

should approximate to 1/r as r-*- oo . A function of this type is

where a is any suitable constant. A solution of equation (4"28) with
such a form for FB* would be a valuable step towards a solution of
the wave functions of complex atoms.

t Fock, loc. cit., equations (83) and (84).
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Note added in proof.

When the wave functions occurring in ft are not orthogonal to
each other, it is more convenient to use another expansion for
than that used above. It is easy to show that

1), fr (2)^,(2), ..

where the summation is over all permutations of the electron co-
ordinates among the columns of the determinant. There are
obviously Nl such determinants.

Integration with respect to any variable can be carried out with
great ease, as each variable occurs in only one column of the deter-
minant; thus integration with respect to all the coordinates except
those of electron 1 is given by

4 = 1

an, a12,

a21, a22, a2N

a Nl'

where a^ = I <f>j (x) ^ (x) doc.

If H is an operator such that

and i/* operates on the coordinates of electron k only, we find

(T^rro J_ J_ _ v i * au>

Similar results for Sil. D. i

' M i aNt> ••• &Nk> ••• aNN

i... driV can also be deduced.


