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Abstract: A new regularization and renormalization procedure is presented. It is particularly 
well suited for the treatment of gauge theories. The method works for theories that were 
known to be renormalizable as well as for Yang-Mills type theories. Overlapping diver- 
gencies are disentangled. The procedure respects unitarity, causality and allows shifts of 
integration variables. In non-anomalous cases also Ward identities are satisfied at all stages. 
It is transparent when anomalies, such as the Bell-Jackiw-Adler anomaly, may occur. 

1. INTRODUCTION 

Recently it has been shown [1] that it is possible to formulate renormalizable 
theories of charged massive vector bosons. The derived Feynman rules involve ghost 
particles, and in order to establish unitarity and causality of the S-matrix Ward iden- 
tities are needed. The necessary combinatorial techniques were given in ref. [2], in 
the treatment of massless Yang-Mills fields. It was emphasized that these same tech- 
niques work also in the case of massive vector boson theories obtained from the 
massless theory by means of the Higgs-Kibble [3] mechanism. Stated somewhat di,'- 
ferently: the manifestly renormalizable set ** of Feynman rules involving ghosts may 
be transformed into a set of manifestly unitary and causal Feynman rules by means 
of Ward identities. Actually these manifestly unitary and causal Feynman rules are 
quite meaningless in view of the occurring divergencies, and a direct proof of unita- 
ry and causality starting from the manifestly renormalizable roles is to be preferred. 
This is precisely the program carried through in refs. [1, 2]. 

However, even with a set of manifestly renormalizable rules one cannot be sure 
that a consistent theory results unless a suitable cut-off and subtraction procedure 
has been defined. In particular, since unitarity depends crucially on the validity of 
the Ward indentities one must have a procedure that respects those Ward identities. 
In ref. [2] the existence of such a procedure was proven for diagrams containing at 

* Postal address: Maliesingel 23, Utrecht, the Netherlands. 
** i.e. renormalizable with respect to power counting. 
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most one closed loop; it is the aim of  the present paper to extend the argument to 
arbitrary order of perturbat ion theory. 

In connection with the question of renormalizability there is the problem of  over- 
lapping divergencies. This problem is of course not  peculiar to gauge theories, and 
since it has been solved in other cases one could perhaps consider this as a not very 
urgent problem. However, our treatment deviates in several respects from the con- 
ventional procedures, and for this reason we have also considered this problem. It 
turns out that the techniques given below are particularly well suited to this pur- 
pose, and it will be shown that no difficulties arise. 

The procedure suggested in ref. [2] was based oi1 the observation that the Ward 
identities do hold irrespective of  the dimension of  the space involved. By introduc- 
ing a fictitious fifth dimension and a very large fifth component  of  momentum in- 
side the loop suitable gauge invariant regulator diagrams could be formulated. This 
procedure breaks down for diagrams containing two or more closed loops because 
then the " f i f th"  component  of  loop momentum may be distributed over the various 
internal lines. It was guessed that more dimensions would have to be introduced,  
and thus the idea of continuation in the number of dimensions suggested itself. This 
is the basic idea employed in this paper *. 

In sect. 2 we define an analytic continuation of the S-matrix elements in the com- 
plex n-plane, where n is a variable that for positive integer values equals the dimen- 
sion of  the space involved with respect to loop quantities. The physical situation is 
obtained for n = 4. This definition is such that for finite diagrams the limit for n = 4 
equals the conventional result. It turns out that the generalized S-matrix elements 
so defined are analytic in n and the infinities of  perturbat ion theory manifest here as 
poles for n = 4. 

Renormalization amounts to subtraction of these poles, and one must show that 
this subtraction procedure does not  violate unitari ty etc. In fact, in sect. 3 it will be 
shown that the generalized S-matrix elements satisfy Ward identities, unitari ty and 
causality for all n. In sect. 4 we consider the question of renormalization and over- 
lapping divergencies. 

Since the whole subject of this paper is rather involved and technical, we have 
stripped the argument as much as possible of non-essential details. The arguments of 
sects. 2 to 4 are valid for theories containing scalar, vector etc. particles; in sect. 5 
the exlension to include fermions is indicated. 

Sect. 6 is devoted to a discussion of the l imitations of  the method.  It is indicated 
where there arise conflicts between the method and Ward identities; there seem to 
be no limitations with respect to the other properties. It appears that such conflicts 
happen only where there really are troubles, i.e. in cases where anomalies [4 6] oc- 
cur. Even then the method is very suitable for practical evaluation of the anomalies, 
which is demonstrated in this section. 

* Independently C.G. Bollini and J.J. Giambiagi [12] have also advanced and pursued the idea 
of continuation in the number of dimensions. 
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Infrared difficulties associated with zero mass particles are not considered in this 
paper. 

For completeness we note that our method bears some resemblance to the meth- 
od of analytical continuation [7]. The analytic continuation in the exponents of  the 
propagators, as suggested by Bollini et al., amounts in the actual calculations to al- 
most the same as continuation in the number of  dimensions (see for instance eq. (A5) 
in appendix A). In several crucial respects, however, continuation in n gives less de- 
formation of  the structure of perturbation theory. 

2. DEFINITIONS 

As an example we take a photon interacting with charged pions. Vertices: 

; p + q = 0 ;  

Fig. 1. 

~ U ~ 2 e 2 6 # v  

The arrows denote the direction of charge flow. Momenta are taken in the direction 
of the vertices. 

The lowest order photon self-energy diagrams are: 

Fig. 2. 

Assuming n component  loop momentum p we have 

e2 f dnPl (2p%k)u!2P-+-k)v - 26uv ] 
k ( p Z + m Z ) ( ( p + k ) Z + m  2) p2 + m  2] " 

Evaluating the integral without worrying about divergencies: 

1 

=e2 f  d x f  dnP 
0 

(i) 

4pup v+ 2puk v+ 2kup v+kuk v 2 ( ( p + k )  2+m2)Suv .  

(p2 + 2pkx + k2x + m2) 2 

Using the formulae of appendix A (note that in the end terms odd in (1 - 2x)  may 
be dropped): 

1 (1 -- 2X) 2 (kuk v - k25uv ) 
(1) = e2in~ n r'(2 -½n) f dx (2) 

o ( m2 + k2x (1 -- x))  2 -~tJ 
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This expression is manifestly gauge invariant. In the complex n plane there are sim- 
ple poles for n = 4, 6, 8 etc. Note that the n-dependence is such that gauge invari- 

ance holds for any n. This is the proper ty  referred to in the introduction: Ward iden- 
tities do not involve the dimensionality of  space. 

In order to carry through renormalization we subtract from (2) the pole and its 
residue for n = 4 

1 
e2 i zr 2 4 @ ~ n  ( k u k  v -- k 2 6 u v ) f  dx(1 - 2x)  2 . (3) 

O 

This subtraction term is a polynomial  in the external momentum,  and of  course 
gauge invariant. Subtracting (3) from (2) and taking the limit n = 4 gives the custom- 
ary result: 

1 

- i e27r2(kuk  v - kZ6uv)f dx(1  2x)  2 ln(m 2 + kZx(1 x ) )  

o (4) 

+ C ( k u k  v - k 2 6 u v ) ,  

where C is a constant related to the n dependence other then in the exponent  of  
the denominator.  Actually C is undetermined,  which may be seen as follows. Sup- 
pose that  in (2) we replace e 2 by e 2 M  4 n,  where M is an arbitrary mass. This gives 
(2) an n independent  dimension of(mass)  2. However C in (4) is changed by a term 
proport ional  to In M. It may be noted that the same arbitrariness results if one eval- 
uates (1) with the help of  Pauli-Villars regulators. 

The above heuristic derivation shows many of  the features of  the method advo- 
cated in this paper. In practical calculations for one loop diagrams this provides a 
very simple scheme for computing gauge invariant results. It could for instance be 
used to show cancellation of  divergencies in the manifestly unitary set o f  Feynman 
rules ment ioned in the introduction and investigated by several authors [8]. 

There are several serious objections to the above manipulations. First of  all, our 
starting point  eq. (1) is meaningless for n ~> 2. In order to obtain a sensible result 
one must (i) change the Feynman rules such that for non-integer n all diagrams give 
rise to well-defined expressions, and (ii) define a suitable limiting procedure for 
n = 4, which restores originally convergent diagrams to their original values while 
originally divergent diagrams are given a meaning consistent with unitarity etc. Thus 

first of  all a redefinition of  the S-matrix is in order. 
Consider again eq. (1). First we split the n-dimensional space in a 4 dimensional 

(physical) and an n 4 dimensional subspace: 

f dnP-+ f d4P f dn_ 4 P . (5) 

Multiplying (1) with two arbitrary physical four vectors e l ,  and e2v we see that (1) 
depends on the direction of_p but  not  on the direction of  P. Introducing polar co- 
ordinates in P space and integrating over angles one finds: 
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2(rr) l~ ( n - 4  ) 
(1) = fd4p J ee" ~ 5 r(½(n--4))']tP'~" c°2),  (6) 

where ee is the length of  P in the n - 4 dimensional subspace. The dependence on 
the external vectors e l ,  e 2 and k is not  shown explicitly. Note that (pk) = ~ k ) ,  
(eaP)  = (el_P), (eZp)  = (e2P) and p2 = p_2 + co2. (6) is still quite meaningless, and 
we continue our formal manipulations until we arrive at an expression that can be 
given a meaning. Note that the second integral in (6) contains an infrared divergence 
for n ~< 4. This divergence is superficial and may be removed by partial integration 
(throwing away surface terms): 

] 2 / deeeen 3 ~ f ( p ,  ee2).  (7) dee een-Sf(p_, ee2) _ n -  4 ~ee2 - 
O O 

Doing this X times on (6) gives 

n "½(n-4) 2 e een-5+2K 

0 

For the (in 4 dimensional space) quadratically divergent diagrams of  fig. 2 this is a 
well defined formula for 4 - 2X < n < 2. Note that co ~> 0. Eq. (8) with sufficiently 
large X defines the contribution o f  one loop diagrams to the generalized S-matrix el- 
ements in a finite region o f  the complex n-plane. This region is the domain o f  con- 
vergence o f  the integrals in (8). 

By taking a sufficiently large ?, the domain of  convergence extends to arbitrarily 
small n. Furthermore,  the degree of  convergence is 2 n as far as ultraviolet behav- 
iour is concerned and n 4 + 2X for the infrared behaviour. Clearly, by choosing a 
suitable X and n one has a representation of  the generalized diagrams in some region 
of the n-plane in terms of arbitrarily convergent integrals. 

If a diagram is convergent in 4-dimensional space then the redefinition (8)exis ts  for 
n < n o with n 0 > 4. Moreover, for n = 4 (8) equals the result evaluated in the con- 
ventional way, as may be seen by taking X = 1 and setting n = 4. Thus for finite dia- 
grams our prescription gives the conventional result in the limit tz -- 4. 

For divergent diagrams (8) will be meaningless for n = 4. However, as will be 
shown, (8) may be continued in the complex n-plane to larger n values. The result 
will in general have a pole at n = 4. In order to make sense in the limit n = 4 one 
must introduce counterterms in the perturbation expansion, and those counterterms 
must be chosen such that the poles at n = 4 disappear. Whether this can be done in 
a consistent manner is a.separate problem, to be tackled in sect. 4. 

For values o f  n outside the domain o f  convergence o f  the integrals in (8) the con- 
tribution to the generalized S-matrix elements is defined as the analytic continuation 
of(S). 

It turns out to be possible to construct explicity this analytic continuation to- 
wards larger n values. The method is as follows. By means of partial integration, valid 
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inside the domain of  convergence of  (8) we derive a new formula, identical to (8) in- 
side the domain of  convergence of  (8), but analytic in n in an enlarged domain. By 
the principles of  analytic continuation this new formula is then equal to the analy- 
tic continuation of  (8) in this enlarged domain. 

In view of  the importance of  this construction we will try to formulate it as clear- 
ly as possible. Consider the integral: 

pa xl p ~ 2 . . .  P ~  
( ,  

I = J d K p  (9) 
((p +kl )2  + m~) ~'  ((p +k2)2 + m2)~2 . . .  ((p +kl) 2 + m2)al 

Pa, Pb etc. are components a, b etc. of  p. The exponents ?~i" - - ?vi are not necessari- 
ly integer. (8) is of  the form (9) with K = 5, where the integration over P5 in (9) is 
nothing but the co-integration in (8). Thus P5 occurs with an n-dependent exponent 
in the numerator. Also p 1, P_2 etc. may occur in the numerator, they are contained 
in (8) in the function j~The differentiations with respect to 00 2 in (8) have as net ef- 
fect an increase of  the exponents of  the factors in the denominator; the c~ i will be in- 
teger, but they can be larger than 1. 

The integral in (9) will be convergent if 

X I > - I , X 2 >  1, . . . , X / > - I  

/~+~'1 + / 2 + ' ' "  X/--2(Oel + a 2 + ' ' '  Oel)<O" 
Next we insert in (9) the expression, identical to unity: 

(lO) 

with 

r =fdKpPa ,... [ +l+k~ + (Pk l )  ) 
((P+kl)2+,,,1) ( 1~2...( )~l 

or 

+ 2o¢2(m~+ k~ +(Pk2) ) + . . . + 2O~l(_rn2 +k2+(Pkl)  2 7 
( )0¢1( )C~2+1... ( )C~l ( ) a l (  )a2 . . . (  )al+la 

(12) 

I = -  1 I ' .  
(•+X I + X  2+ . .  ~/-2c~ 1 - 2 a  2 - . . .  - 2 a l )  

(13) 

1 ~1 ~Pi (11) 
i= OPi 

Within the region (1 O) we may perform partial integration. After some trivial algebra 
we obtain: 

X 1 + X 2 + . . .  Xj I + 2(al + a2 +" " " °¢1) 1 I '  
I = - -  - - I - - - -  

K K K 
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The integral f converges if 

X l > - I  , ) t 2 > -  1 , . . . , ~ . >  1 

t¢ +X1 +k2 + ' ' "  ~'/" - 2(al +~2 + " ' "  ~l ) <  1 . (14) 

This is a larger domain than (10), and the right hand side of (13)  is the explicit rep- 
resentation of the analytic continuation of I into this domain. 

For one loop diagrams the variable n appears linearly in some exponent X. In 
that case one obtains an analytic continuation over a region of magnitude one in the 
direction of positive n. 

The above operation will be called partial p. By repeated application of partial p 
and for sufficiently large X one obtains an explicit representation valid in an arbitrar- 
ily large domain in the complex n-plane. Or, in a given region of the n-plane a repre- 
sentation in terms of arbitrarily convergent integrals. 

With this prescription one may now evaluate the integrals in the example (1). The 
result is of course precisely (2). 

For diagrams with two closed loops one may proceed in a similar way. There will 
be two n-fold integrals, and one writes: 

d ' ' 

In the P '  integral the fifth axis is taken in the direction of the (n --4) vector P: 

. , P f d p '  5 f a n  s P' (15) fd4P - fd4P - f dn_ 4 

Tile integrands will be independent of the P and P'  directions. The integration over 
angles may be performed: 

4n~ (2n-9) 
, 1 5 ) ~ F ( ½ ( n _ 4 ) ) F ( l ( n _ 5 ) )  f d4P - f d4P_ ~ f rico con-5 ; d p '  5 f de,co,n 6.  

0 - ~  0 

(16) 

The argument of such integrals will be a function of the components p and p ' ,  of 
t 2 . . t co2, p~2 + co,2 and (p~ +co) 2 +c~ (arising from p 2  p 2 and (p + p')2).  

(16) may be written in an elegant form by introducing a twodimensional space, 
and the vectors 

t 

(o) q = , q - -  , . (17) 

With el/the completely antisymmetric tensor in two dimensions (e 12 = 1) we have: 
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f d,,p f , 1., ~ '2 d nP J t P - ,  P , (p +p,)2) 

2n½12n 9)- 1 
' ' "e "n-60"c " 

- P ( ½ ( n - 4 ) )  F(½(n 5 ) ) f d 4 P f d 4 8 f d 2 q f  d 2 q t  q'qiq/) ! i/qiq/' 

.[.(q2, q ,2  (q + q,)2) . (18) 

The step-function 0 is needed because of the lower limit 0 in the co"integration in 
(16). We have dropped explicit indication of tile dependence on the components of_p 
and p'. 

The equivalent ot"(8) is also obtained by partial integration. To this purpose one 
observes that 

1 ~ ~ _,)c~+ 1 
(e i iqiq))~ - (c~+ 2)(c~+ 1) eat' 8qaOq' b (eoqiqJ  " (193 

X times application of(19)  and subsequent partial integration leads to an expression 
similar to (8): 

2rrl(2n -- 11) 
[ '{ ; (n  4 ) + X ) P ( { ( n - 5 ) + ~ , j j o 4 P j d 4 P _ , j d a q j d 2 q , . e ,  ~ £ , F F F  

,.n--6+2X 
( 0 l iq/)  

X O(eo.qiq/) + -~ aq2 ~q,2 aq 2 O(q + q,)2 Oq '2 a(q + q')2- 

X f ( q 2  q,2, (q q,)2) . (20) 

Again, (20) and its analytic continuation to larger n define the contribution of  the 
two-loop diagrams to the generMized S-matrix elements. Explicit representations for 
large n may be obtained by operations similar to partial p in the one loop case. We 
need four such operations in the two loop case, and we will discuss them in sect. 4. 

Definitions similar to (20) may be given for the three or more closed loop cases. 
The above prescription applies if "all loop particles are scalars. To complete our 

prescription to cover vector fields we note that indices that are part of the propaga- 
tors contained in the loops now take the values 1 to n for integer n. This is because 
polarization vectors corresponding to internal lines become n-component vectors. 
The only practical consequence of this fact is that in doing the vector algebra of all 
occurring loop indices one must use the rule 

6 = n .  (21) /a,u 

After that one has expressions that can be used to define the diagrams for non-inte- 
ger n. In establishing Ward-identities one notes an interplay between these factors 
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n and the factors n occurring in association with averaging over all directions in p 
space of factors like pupv. See eqs. (A7), (A8). By virtue of (21) equations like 

pu(8uv p2 Pupv) = 0 

remain true even for continuous n in the sense defined above. 

3. WARD IDENTITIES, UNITARITY, CAUSALITY 

We must now establish that our generalized amplitudes satisfy Ward identities. 
These Ward identities involve (i) vector "algebra and (ii) shifting of integration vari- 
ables. In the sense defined in sect. 2 it is easy to see that the vector algebra goes 
through unchanged for any n. For example, consider the photon-pion vertex of  fig. 
1. One requires that this vertex when multiplied by the photon four momentum 
equals the difference of two inverse pion propagators. Thus, in 4 dimensions with 
the vertex of fig. 1 where q = - p  -k :  

k** { ( 2 p + k ) ~ }  = ( p + k - p ) .  { - ( p + k + p ) . }  

= _ ( p  + k)2 m 2 + (p2 + m 2) . 

In the n dimensional formulation, with the notation of eq. (5): 

k u { - ( 2 p  + k)u } = - ( k ,  2p +k)  = - ( k ,  2p + k) 

- ( k + p _ p , k + p + p ) = _ ( p + k )  2 mZ+(p2+m2) ,  

with (p + k) 2= (p  + k) 2 + p2 and p2 = p2 + p2 .  

It is this rather trivial type of vector algebra that is involved in proving the gauge in- 
variance of  eq. (1). In the case of vector particles things are slightly more compli- 
cated, and the rule (21) comes in. In that case one must demonstrate for instance 
that eq. (A7) from appendix A can be obtained from (A8) on multiplication with 
6,w , which indeed happens to be the case. In general one must show that the vector 
algebra that must hold for the left hand side of eqs. (A5) - (AIO) (and their gener- 
alizations) actually holds for the right hand sides for any n. One easily convinces 
oneself that this property holds keeping in mind that all necessary equations can be 
obtained from (A5) by differentiation with respect to k. 

As for point (ii) the shifting of  integration variables, we first note that any shift 
over an external (= physical) four vector is certainly allowed since we have kept the 
integrations over the first four components unchanged. Nothing else is required in 
the one loop case. In the two loop case we must have invariance for shifts like 
p -+p +p ' ,  where p and p '  are both loop momenta. From formula (20) this is evi- 
dently correct, due to the fact that the e-product is invariant for such shifts. 
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Establishing unitarity and causality, or more precisely cutting rules [9, 10] is al- 
so very easy. With the usual -+ ie prescriptions one needs only to establish the validi- 
ty of the "largest t ime" equation of  ref. [ 11 ] (or (2.8) of  ref. [ 10]) which involves 
only the time components  of the n-vectors, or after fourier transformation, the ener- 
gy components.  Since, as far as these components  are concerned, we have not  changed 
the structure of  the propagators and integrations (as is evident from (8) and (20)), 
and since we can always take sufficiently convergent representations in some region 
of  the n-plane, it is obvious that cutting rules hold in some region of the n-plane. Be- 
cause any term in the cutting equations can be continued analytically to smaller and 
larger n values by means of the methods of  sect. 3 we have the result that the cutting 
rules hold for any n. 

It must be noted that in these rules the integration over intermediate states in- 
volves n-space. If all poles for n = 4 have been removed then in the limit n = 4 this 
integration over intermediate states reduces to the required integral over physical 
phase space. It is essential in this context  that the phase space integrations are them- 
selves finite, and do not introduce new poles. 

In considering cut diagrams some care in handling the 8-functions is necessary. 
The following remarks may be of  help in this respect; 
(i) in (8) (and analogously in (20)) the various factors 00 2 occur in denominators 

simply in addit ion to the masses of the loop particles. E.g. p2 +//12 =/92 + 002 +//12. 

Thus one can see (8) as a superposition of diagrams where internal masses m 2 have 
been replaced by 00 2 + m 2 with weight function 

One may go further and exchange the co and p_ integrations in (8). For cut diagrams, 
where the p integration is convergent also one may further exchange differentiation 
with respect to 03 2 and the p integration. Then the calculation of  cut diagrams be- 
comes identical to the conventional calculation followed by differentiation and inte- 
gration with respect to 00. 
(ii) If one chooses a very small n the above mentioned weight function may induce 
strong threshold singularities. 

4. RENORMALIZATION 

In order to obtain a consistent theory it must be shown that the poles for n = 4 
can be removed, order by order in perturbation theory. In a given order any new 
subtraction terms to be introduced must satisfy a stringent criterion: they may not  
have an imaginary part. This follows very simple from the fact that in a given order 
the imaginary part,  through unitari ty,  is determined unambigeously by the lower 
order results. In practice this means that new subtraction terms must be finite poly- 
nomials in the external momenta.  The demonstration that this is possible includes 
treatment of  the overlapping divergencies. It is perhaps worthwhile to mention the 
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fact that Ward identities and the problem of overlapping divergencies have nothing 
to do with each other, even though in quantum electrodynamics Ward identities have 
been of technical assistance in unraveling the divergence structure of perturbation 
theory. 

In this section we will treat one and two closed loop diagrams. The generalization 
to more closed loops is obvious. In order to keep the discussion transparant we will 
omit most numerator factors as for instance occurring when there are vector parti- 
cles. Yet the treatment will be such that these factors can be written without inter- 

ference with the main argument. 
The definitions (8) and (20) will form the basis of our discussion. Consider first 

one loop diagrams, eq. (8). We must show that the residues of eventual poles for 
n = 4 are finite polynomials in the external momenta. If the diagram is convergent 
in 4-space the expression (8) will be non-singular for n = 4. if the diagram is diver- 

gent than (8) will be well-defined only in some region to the left of n --4. Subsequent 
analytic continuation by means of partial p shows a single pole for n = 4 multiplied 
by a finite and well-defined expression. On the other hand, (8) may be evaluated ex- 
plicitly by means of Feynman parameters and the equations of appendix A. One ob- 
tains an expression of the form: 

1 P(y, m, k) (22) p( / -  -~ n) f dyl ... f dYi 
(M2) j 

independent of X. In here ] is some integer and M 2 and P are polynomials in the 
Feynman parameters Yi, the masses and the external momenta. The eventual pole 
for n = 4 is explicit in the P function; one has poles for n ~> 2/" in agreement with 
the results obtained by means of partial p. All this is to ensure that there is no trou- 
ble hidden in the Feynman parameter integrations * 

The residue of a pole for n an even integer ~> 2,/is: 

C f dyl...f dYi(M2)l  e ( y ,  m, k )  (23) 

with l = i n  - j ~> 0. Obviously (23) is a finite polynomial, there are no terms of the 
form In k 2. 

Thus, up to one closed loop, eventual poles for n = 4 (or for any other n) have as 
residue polynomials in the external momenta, and may be subtracted. 

Next we turn to two closed loops. We assume that counter-terms of the .form 

1 
n - 4 P(k ,  m)  

* This is by no means trivial. For instance infrared divergencies are usually hidden in the Feyn- 
man parameter integrations. For two or more closed loops ultra-violet divergencies may also be 
transferred from the momentum integrations to the Feynman parameter integrations. For this 
reason one must be very careful in taking together propagators belonging to different loops by 
means of Feynman parameters. 
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have been introduced such as to make all one loop diagrams finite. Consider the ge- 
neral two loop diagram: 

Fig. 3. c433' diagram. 

We have omitted all external lines. The corresponding expression is: 

1 (24 )  
j dnP l  dnP~(P~ - m~ )c~ (p~ + m2)~ ((pl - p2 + k ) 2 + M 2 ) ' y  

and we will speak of  the c~/3 ~, diagram. 
In here we have assumed that all propagators that depend on Pl  and external mo- 

menta have been taken together by means of  the Feynman parameter method. Simi- 
larly for P2 and Pl  - P2 dependent propagators. Furthermore we have suppressed 
all numerators, except insofar as power counting is concerned; thus 

Pl Pl 
# u 

( p ~ +  m~) 5 

is in the above represented as 
1 

(p~ + rn~) 4 

Here, and in what follows, we write the integrals as if we are operating in an n-di- 
mensional space with positive integer n, but this must be understood as symbolic for 
integrals like in (20) with sufficiently large X. We work in a region of small n suffi- 
ciently far to the left of  n = 4. 

There are three one-loop diagrams contained in the above two-loop diagram. We 
will call them the cry,/3"/and oq3 sub-diagrams respectively: 

ay 191t a.~ 

Fig. 4. 
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If  any of these subdiagrams diverge we have counterterms associated with them. In 
addition to the a/3 3' diagram we must therefore also consider the subtraction dia- 
grams: 

Fig. 5. 

The crossed vertex in the first diagram refers to the pole with polynomial coefficient 
to be subtracted from the a3'  diagram. Similarly for the other diagrams. It is clear 
that the subtraction diagrams contain double poles (1 pole from the crossed vertex 
and 1 pole from the loop integration) as well as single poles. In particular we have 
the single pole from the vertex multiplying the finite part of the loop integration. 
This will lead to terms of the form 

~ 1  ln(k2)  
n - 4  

Such terms cannot be renormalized away, and the theory will be renormalizable on- 
ly if these terms cancel against similar terms coming from the two loop (o~/37) dia- 
gram. This means that we must unravel the pole structure of  the a/33' diagram, eq. 
(24). In this way presents itself here the problem of the overlapping divergencies. 

The expression (24) is well defined for sufficiently low n. The continuation to 
large n is slightly more complicated then in the one loop case. There are four oper- 
ations that may be performed. First one may insert in (24) the expression, equal to 
unity: 

1 ~  ~Pli 
n i=1 OPl i 

and perform partial integration. The result is an equation similar to (13) showing a 
pole for n = 2(~ + 3'). Note that the denominators with the exponents a and 3' in- 
volve Pl" We will call this operation partial (a, 3'). Similarly one may define an oper- 
ation partial (/3, 3') by partial integration with respect to P2" Further there is the 
operation partial (a,/~) obtained by partial integration with respect to Pl after the 
substitution p '  = 2 Pl  - P2' Finally there is the operation partial (~,/3, 3') showing a 
pole at n = a +/3 + % and obtained by insertion of 

1 ~ (~Pli ~P2i~ 
2n i=1 \OPl i +~2i]" 

The explicit expression obtained after applying partial (a,/3, 3') to (24) is: 
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1 
( 2 4 ) = - ( 2 n  2a--2/3 27) 

with 

[_ 2 m2 
f = f d n P l  dnP2L( )c~+l( ifl i ),~ 

+ M2_ +(pL.-p2, x))] 
( )'~( )~( )~+~ J 

I '  

2~3rn 2 
+ . . . . . .  

( ) a (  )fl+l( )3, 

(25) 

(26) 

where the explicit form of the denominators is as in (24). 
The procedure for continuation of  (24) to large n is now clear. (24) has poles for 

n = 2(a +/3), n = 2(a +7),  n = 2(/3+7) and n = a +/3 + 7. The integral representation 
will be valid for n less than the minimum of these four. Applying partial (a,/3, 7) 
eventually followed by partial (c~,/3), (a, 7) and/or (/3, 7) gives the desired continua- 
tion. 

It would appear that (24) could contain four coincident poles, but actually there 
are at most second order poles. 

We are now interested ill poles with non-polynomial residues. Definition. A harm- 
less pole is a pole with as residue a polynomial of  finite order in the external momen- 
ta. Definition. The subintegral ~,/3 is said to be divergent or convergent according to 
whether a +/3 ~< 2 or a +/3 > 2. Definition. The a/37 diagram (24) is said to be over- 
all convergent or overall divergent according to whether a +/3 + 7 > 4 or a +/3 + 7 ~< 4. 

More specifically we may call a subintegral a,/3 logarithmically, linearly etc. diver- 
gent i f a  + 13 = 2, 3, etc. Similar for the overall divergent cases c~ +/3 + 7 = 4, 3 .... • 
etc. 

First we will consider a simple situation, namely the case that the ~, 7 subintegral 
is logarithmically divergent while all other subintegrals are convergent. Then there is 
only one subtraction diagram, and we must show that (24) together with this subtrac- 
tion diagram contains only harmless poles. More specifically consider the case 
a + 7 = 2,/3 = 2. Taking together the ~ and 7 denominators of  (24) by means of  Feyn- 
man parameters and performing the integration over Pl  we obtain an expression of  
the form 

riP(p2 + ,n~)~+v ~n (p2 + 2pq + rn~) fl ' (27) 

where we have written p instead of P2 and suppressed various irrelevant factors. 
From this we must subtract the expression corresponding to the subtraction diagram 

[ 2 l (28)  dnP 
a 2a + 27 - -n(p2  + 2pq + m2f"  
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Main Theorem. The difference of (27) and (28) for c~ + 3' = 2,/3 ~> 1 contains only 
harmless poles. Proof: see appendix B. 

This theorem is really the key theorem to our problem, because the. general case 
may be reduced by means of  partial operations to the case considered in the main 
theorem. 

The general case may now be treated systematically. The case that any of  the ex- 
ponents a,  13 or 3' is zero or negative is trivial and corresponds to a diagram containing 
no overlapping divergencies. Example: 

Fig. 6. 

Such cases do not require new subtractions. Thus we assume now c~ > 0, t3 > 0, 3' > 0. 
Theorem 1. If the integral (24) is logarithnlically divergent and contains no divergent 
subintegrals than it contains a harmless single pole at n = 4. 
Proof: by means of partial (c~, 13, 7) it is seen that the integral behaves at n = 4 as a 
single pole times a finite function. Actual calculation of (24) with the help of Feyn- 
man parameters exhibits this pole: 

(24) ~ I ' (~  + 13 + 3' - n ) f d Y  1 fdy 2 f ( Y l '  Y2 ) 

and the integrals over the Feynman parameters Yl Y2 are well defined and finite. By 
actually setting n = 4 in those integrals one obtains the desired result. 
Theorem 2. If  the integral (24) is overall divergent and contains no divergent subin- 
tegrals then it contains a harmless single pole at n = 4. 
Proof: by means of partial (~, 13, 3') this case may be reduced to the case of theorem 
1. 
Theorem 3. If the integral (24) is overall convergent or logarithmically divergent 
then it contains at most one divergent sub-integral. The denominator not  involved in 
the sub-integral has an exponent  ,~ 2. 
Proof: if c~ + 13 + 3' ~> 4 and for instance c~ + 13 ~< 2 then 3' ~> 2. 
Theorem 4. If  the integral (24) is overall convergent or logarithmically divergent and 
contains one divergent sub-integral then the difference with the subtraction diagram 
containing the pole subtraction term corresponding to the divergent sub-integral has 
only harmless poles. 
Proof: let a,/3 be the divergent subintegral. By means of partial (a,/3) the divergent 
subintegral may be reduced to a logarithmically divergent subintegral. Since the re- 
maining denominator has an exponent  >/2 we are then in the case considered in the 
main theorem. 

Finally we must consider the case that the integral (24) is linearly, quadratically 
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etc. divergent. By means of partial (c~,/3, 3`) this case can be reduced to the case of 
an overall convergent or logarithmically divergent integral, which has been consid- 
ered above. This terminates the proof  of  renormalizability up to and including two 
loop diagrams. 

As an exmnple consider the case c~ =/3 = 3  ̀= 1. 
Thus: 

. . . . .  1 
l=fd"Pl d"P2 (p~ +rn~)(p~+ m~)( (p l  P 2 -  k )2+  m~)"  (29) 

The integral is overall quadratically divergent, and oe3', 13"/and ~ subinteg~als are all 
logarithmic',dly divergent. Thus we have three subtraction diagrams, and for instance 
the subtraction diagram corresponding to the a7 subintegral is: 

f _ 1 1 } ( 3 0 )  
, '~, = f d , , p  2 t'P dnPl (P~ +m~)((Pl - P2 - k)2+ m~) ( p 2 +  m~) 

Fig. 7. 

where PP{ } means pole part for n = 4. Because we have a logarithmic divergence 
the polynomial multiplying the pole l / (n  4) will be simply a constant. Similarly 
for the other two subintegrals. 

Applying partial (ct,/3, 3') to (29) we obtain: 

1 . . . .  1 f 
2n 6 

I'=fdpl dnP 2 
2, ,~ 

21"?1~ 
"~ '~ 2 2 2  (Pi +mT)(p.~ +m 2) ((pl -P2 - k)2 +m~) 

2m~ + 2k 2 2(Pl -~ P2' k) 
(31) 

Applying partial integration with respect to P2 in (30) we obtain: 
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is = 1 +V-~ fd-P2 W{ } 
2m~ 

(p2 + m2)2 
(32) 

In the limit n = 4 the second term of (31) combines together with the subtraction 
diagram such as to have precisely the case discussed in the main theorem. Similarly 
for the other terms, to be combined with the other subtraction diagrams. 

This example demonstrates how the operation partial (a,/3, T) neatly separates 
out the various overlapping divergencies. After that the main theorem guarantees the 
absence of unwanted poles. 

5. EXTENSION TO FERMIONS 

The extension to fermions is straightforward and based on the following observa- 
tion. Everything may be formulated such that only traces of strings of T-matrices 
occur. If there are external fennion lines this may be done through the use of suit- 
able projection operators. These traces must than be evaluated according to the rules 
(see appendix C) 

{Tu, T v} = 28~v, (33) 

Tr (S)  = 0 if S is an odd string of  3"s. (34) 

T r ( I )  = 4 .  (35) 

Remember that 8uu = n. Any Ward identity relying as far as T-matrices is concerned 
only on (33) (as in quantum-electrodynamics) will be satisfied for every n. 

Note that there is no place for the pseudo-scalar "I, 5 (in conventional notation) in 
(33), as there is no place for the pseudo tensor eum.  See sect. 6. 

The rule (35) can be satisfied by finite matrices only for n = 4, but this is of  no 
importance because we are only interested in a consistent algebra for n ~ 4. Or, in n- 
dimensional space one will have 

Tr ( I )  = f ( n )  

where f is a function of n only. We need only f (n)  = 4, and the deviations o f f ( n )  
from f(4)  are never important for Ward identities because one always compares dia- 
grams with an equal number of traces. 

As an example we consider the lowest order photon selfenergy diagram in quan- 
tum electrodynamics: 
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p 
Fig. 8. 

f dnp Tr [3'u (i3' (p + k) + r n ) ~  ( i3"p + m)] 
((p + k) 2 + m 2 ) ( p  2 + m 2) 

The trace may be evaluated using (33), (34) and (35). Taking denominators together 
one obtains: 

1 [" fur(m2 +p2 +pk)  - 2 p ~ p v - p u k  v - k  p v 

4dflo d x 3  dnp (p2 + 2pkx + k2x + m2) 2 

Using the equations of appendix A: 

l 2 x (  1 --  x )  ( k u k  v - l u r k 2 )  4 i7r~ n 
P(2 - ~ n ) J  dx 

- P ( 2 )  0 ( m2 +kZx(  1 - x ) )  2-~-n 

which is manifestly gauge invariant. 

6. LIMITATIONS OF THE METHOD 

The method fails if in the Ward identities there appear quantities that have the 
desired properties only in four dimensional space. An example is the completely an- 
tisymmetric tensor e If  the particular properties of this tensor are vital for the tzva~" 
Ward identities to hold our method will fail because we cannot generalize e vo~ to a 

5 # tensor satisfying the required properties for non-integer n. Similarly for 3' • One can 
write: 

.,/5 = 51 e mr ~ 3'~3'v3'c~3't3 

insert this whenever 3'5 occurs and take the e-tensor outside of  the expression to be 
generalized to non-integer n. However, if we are dealing with Ward identities that re- 
ly on 

{.).5, 7~} = 0 for a = 1 . . . . .  n 

Tr (75TuTv'TaT #) = 4euv ~ 
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than this method breaks down. This is precisely the case of  the well-known anoma- 
lies; to see this consider the vertex 

p + k  

k , ~ . - P ' ~ - . ~ . . . . .  ~,~.,/5 

P 

Fig. 9. 

which is part of a linearly divergent loop with p as integration variable. One of  the 
required Ward identities is that  multiplication with ku should give something pro- 
portional to the fermion mass. In the combinatorial proof  one writes: 

"/k'/5 = (T(P + k) - '/p)3'5 = 3'(p + k)'/5 + ' /5 ' /p 

where p is the loop momentum. 
This is incorrect i f  n 4= 4. It is easily seen that the breakdown of the Ward identi- 

ty is proport ional  to p - p,  and after integration to n 4. When mult ipl ied by a 
pole arising from the loop integration a non-zero part remains in the limit n = 4. 

To exhibit  all this explicitly we evaluate the anomaly for the well-known trian- 
gle graph. In the notat ion of Bell and Jackiw [4] the triangle graph is: 

r~.~=fdnr i T r I 3 " S T ~ { i T ( p  + r )  - m }  " / u ( i 3 " r - m ) ' / u { i 3 " ( r  q ) - m } ]  (36) 
( ( p + r ) 2 + m 2 ) ( r  2 + m 2 ) ( ( r  q ) 2 + m  2) 

where p and q are the photon momenta.  Multiplying by k s = (p  + q)~ one writes: 

"/5i3"k = "/5 {_  i"/(p + r) - m + i3"(r - q )  - m + 2m} 

= - {i3"(r - q)  + m }  "/5 _ 3"5 {i3"(p + r) + m}  + 2m"/5 

+ 2i3'5 7(r  - r )  

where r coincides with r in the first four components,  but  is zero otherwise. The last 
term is the anomaly which we will evaluate. The four-vector s = r - _r_ has the first 
four components  zero. This greatly simplifies computat ion of  the trace if  one every- 
where sets r = r_ + s. The expression for the anomaly becomes 

2 i [ , d n  Tr[Ts {i3"(p +r_) + i t s  - m}  7 u {i3"_r + i t s  - m}  7 v { iT ( r  - q )  + i3"s - m}7 5 ] 

((p + r )  2 + m  2 ) ( r  2 + m 2 ) ( ( r -  q)2 + m 2) 

Remembering that 3 '5 = ")'13'273"/4 , and that all vectors except s are physical (have 
zero components  beyond the fourth) one reduces the trace to 4 i s 2 e x u w p x q  K where 
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one uses the fact that 3`s anticommutes with all other 3`-matrices. Finally we must 
evaluate the integral 

fdnr(f ~'Z r) 
(r 2 + m2) 3 

where we have omitted p and q in the denominator since we need only the pole for 
n = 4. With the help of (A8) multiplied with 6,v where now the indices are taken to 
run from 5 to n only we obtain for this integral: 

• l-n 
1/'/" 1 P(2- -~n)  ½(n 4) 

(m2)2 ~n P(3) 

In the limit n = 4, and taking into account that there are two graphs (the second ob- 
tained by the interchange/a*+u, p~q) we find for the anomaly: 

8ilr 2 ex, vKPxq K 

which agrees with the results of  Bell and Jackiw [4], eq. (3.12c), and Adler [4], eq. 
(22). 

Note that in our formulation the anomaly has nothing to do with the pecularities 
of shifts of integration variables. 

The usual ambiguity of  the choice of integration variables is replaced in our for- 
malism by the ambiguity of the location of 3`5 in the trace in (36). I f  before general- 
ization to n 4= 4 is done, 3 ̀5 is (anti) commuted to the right, a different result emerges. 

7. CONCLUSIONS 

The method presented essentially completes the proof  of  the renormalizability of  
the theories presented in ref. [1 ]. The method fails if quantities particular to four-di- 
mensional space, such as 3`5 or the tensor euv ~ or scaling behaviour play an essential 
role in the Ward identities. 

We have not considered infrared problems. Here we only wish to remark that the 
generalized S-matrix elements will have additional poles for integer n-values if in- 
frared divergencies are present. 

The authors are indebted to the participants of the discussion meeting at Orsay, 
Jan. 1972, for inspiring and constructive criticism. 

APPENDIX A. SOME USEFUL FORMULAE 

f d n x f ( x  = f f ( x ) r  n-1 dr sin n-2 On_ 1 d O  1 sinn-3 On-2 don 2 " " " d01 (A1) 
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with 0 ~< 0 i ~ It, except 0 ~< 01 ~ 2n. 
If f ( x )  depends only on r = x/x  2 + " " " X2n one may perform the integration over 

angles using 

leading to 

_ c - r ( ~ ( m  + 1)) (A2) 
0 sinm OdO - V ~ F ( I ( m  + 2 ) ) '  

1 

f d n x f ( r  = 27r 7n i- rn_ 1 F ~ n ) J f ( r )  dr (A3) 

x~ 1 r(½(~ + i)) r ( .  - 1(~ + 1)) 
dx = -  

0 (x 2 +M2)a  2 r((~) (M2)~-~- ~+1 ) 
(A4) 

Keeping the prescriptions and definitions of sect. 3 in mind, the following equations 
hold for arbitrary n: 

1 : iTr~ n F(a ½n) 
f dnp(p2 + 2kp +m2)" (m 2 k2)"-½ n F(a) 

p# 17/'2 F(a  -- ½n) t 

f dnP(p2+2kp+m2)  c~ ( m 2 - - k 2 )  a-~n ~ ,  k ) ,  

(A5) 

(A6) 

p2 

f d n p  (p2 + 2kp + m2) ~ 
iTri n . 1 { F ( a -  ½n)k 2 

(m 2 _ k2)a-~n F(a) 

+ F(a 1 - ½n)½n (m 2 - k2)} , (A7) 

P u p v i 7r~ n 1 
fdp (p2 + 2kp + m2) ~- (m 2 - - ~ ) a - ~ n  F(a) {F(a - ½n)kuk v 

+ r(ot 1 ~-n)'  2 _ _ ~ 6 v ( m  - k2)} , 

PuP dP x i~r~ n 1 
fd.p (p2 + 2 0  + m2) ~- (m 2 - k2)~-~" r(~) { r(~ - ½ . ) x  k k~ 

(A8) 

P ( o t -  1 -½n)½(6uuk x +6t~xk u +($vxk ) (m2  _ k2)} , (A9) 
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p2p u _ iTr½ n 1 

f dnP (p2 + 2kp + m2)  a (m 2 k2)C~ ~n [ '(a) 
( ku) ( r ( a -   n)k 2 

+ P(ot - ' ~ n  1) ½(n + 2) (m 2 - k2)} . (A10) 

The above equations contain indices/a, u, X. These indices are understood to be con- 
tracted with arbitrary n-vectors ql ,  q2 etc. In computing the integrals one first inte- 
grates over the part of  n-space orthogonal to the vectors k, ql ,  q2 etc., using (A1) 
(A4). After that the expressions are meaningful also for non.integer n. Note that for- 
mally (A6) - (AI0)  may be obtained from (A5) by differentiation with respect to k, 
or by using p2 = (p2 + 2pk + rn 2) -- 2pk --- m 2. The Feynman parameter method 
for non-integer exponents: 

1 F(O~ +~) / xC~-1(1--Xfl 1 

(ax + b( l  x)) a+~ 

valid for a > 0,/3 > 0. If  one needs this formula for c~ in the neighbourhood of  0 one 
may write 

1 a 
aab ~ aa+lb ~ 

and then use (AI 1). 
The generalization ofeq.  (A11) for many factors: 

1 1~0~1 + C~2 +" " " a m )  1 Xl Xm 2 

am=r(o~l)r(o~2 ) . r (Otm) f dXl j dx2.., f dXm_ 1 
@ . . . a  " o o o 

~1 --t  Xm 1 (Xm 2 X m _ l ) a 2 - I  . . (1 - -X l )am-I  
× 

[alXm_ 1 + a2(Xm_ 2 - - X m _ l )  + . . . . .  +am(1 --Xl)]a~ +% +"-~m 

(A12) 

APPENDIX B. THE MAIN THEOREM 

Consider the integral: 

t P(½(no Z n)) 2 
f _ _ _ _ _ _  __ dnP (p2 + m2)-~(no n) n o n 

A 
(p2 + 2pk  +M2)  °~" (B1) 

We must prove that (B1) contains only hamlless poles for n = n o (where n o is the di- 
mension of  physical space, i.e. n o = 4) and a >~ 1. For a > ½n ° the theorem is trival 
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because then th~ only poles for n = n o are those already explicit  in (B1), and they 
obviously cancel if the rest is nonsingular for n = n o. The nontrivial cases are 
a = l ( n  ° 1 ) a n d a = ½ n  o. 

Formula (B1) is symbolic insofar that the exponent  a stands in fact for the dif- 
ference of  the powers o f p  in the numerator A and those in the denominator.  We will 
prove (B 1) for the case a = ½no with A = 1 ; the case A = (pq) and exponent  a = ½no 
in the denominator  may be proven similarly, and the case that there are two or more 
p ' s  in A may be reduced to the case of no or one p in the numerator.  

Thus consider the special case: 

( (p2 + m2)7(no-n) no -- n J (p2 + 2pk + M2)~no " 

The first term of (B2) may be worked out (see (A11)): 

p2 + m 2 
P ( l ( n  o 

n ) ) J  dnp(" (p2 + m2)~(no-n+2) (p2 + 2pk +M2)~ n° 

1 1 
r (½(n  ° - n)) r ( n  o + 1 - ~ n ) / "  dx  x ½(n°-2) x)-~(no n) 

v(½(no  + 2  n)) F(~(no)  ) 0 

p2 + m 2 

f dnp (p2 + 2pkx + M2x + m2(1 - x)) no+ l - i  n 

Use of  eqs. (A5) and (A7) gives: 

r(½(n  ° - n))  r ("o  + 1 - ½ n )  1 

f 
X (M2x + m2( l  - x) - k2x2) n°+l-n 

(B3) 

F ( n  ° - n )  n "] 

+ 2F(n o+ 1 - ~ n )  ( M 2 x + m 2 ( l _ x ) _ k 2 x 2 )  n° n J  " (B4) 

The only singularities for n = n o are now located in the two F-functions. We are only 
interested in possible non-polynomial residues of the poles at n = n o. To this purpose 
we may set everywhere n = n o except in the two F-functions and in the last exponent  
in (B4). Next,  writing 

x¼(no_2)_ 2 d x~no 
n dx  

O 
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and performing partial integration with respect to x in the second term we obtain: 

1 

, r(~(no - , ) )  / d x  x~ (n° 2) (B4)~ iz r?n°  P(½n°) J0 
( M 2 x  + m2(1 - x )  k 2 x 2 )  no-n  

+ irr~no I ' ( l ( n  ° n))  P (n  o -- n) 1 
. . . . .  (B5) 

P(½no) " (M 2 _ k2)no n 

The second term in (B5) is the surface term arising from the partial integration. 
The first term in (B5) displays a harmless single pole. 

The second term contains the single pole 

irr~no r(~(n ° - n)) r ( ' o  ") 
p(~no) (n o - n) In (M 2 k 2) (B6) 

in addition to harinless poles. 
Consider next the contr ibut ion of  the second term in (B2): 

f 2 dn p , = 
n o - n (p2 + 2 p k  +M2)~ n° 

• 'n 2 r ( ½ ( n o  n))  l 
= l~r~ o (B7) 

n o -- n P(½no) (M 2 _ k2)~no n) " 

(B7) contains harmless poles as well as the pole 

P(~(n ° n)) 2 , 
irr~n° P(½no) n o - n ~(n°  - n )  In (M 2 k 2 ) .  (B8) 

Since F ( x )  behaves as 1/x for x in the neighbourhood of  zero we see that the dan- 
gerous pole in (B6) is cancelled by (B8). 

It may be noted that the difference of (B6) and (B8) contains a harmless double 
poie. Thus in general we may expect to need double pole counterterms at the two 
loop level. 

APPENDIX C. TRACES MAY BE COMPUTED BY MEANS OF THE EQUATION 

Tr ("/UlyU2 . . .  Turn) = Tr ('y*arnT ul . . .  T u rn - l )  

m - 1  
+ 2 ~ 3  

i=1 
(-- 1 )i+1 Tr (3 '~1 . . .  3, **i- 13,~i+1. . .  ,),urn- 1 ) 6 ~i'm (Cl) 
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valid for even m. This  e q u a t i o n  is based  solely on eq. (33) .  Since the  first  t e rm on 

the  r ight  h a n d  side equals  m i n u s  the  t e rm  on the lef t  h a n d  side we have a recurs ion  

fo rmula  re la t ing  traces of  m 7-matr ices  to  t races o f  m - 2 matr ices .  

The  r e q u i r e m e n t  

Tr (7 u l .  . . 7 urn) = 0 for odd  m 

exc ludes  for  ins tance  for n = 3 the  choice  

")'i= o / ,  i =  1 , 2 , 3  

where  the o~'are the we l l -known Pauli spin matr ices .  Ins tead  one may  s imply  use the 

4 × 4 mat r ices  71, 72 and  73. In fact ,  i f  one has  a set of  7-mat r ices  for  some large n 

one m a y  for  lower  n always use a subset  o f  t ha t  set. 
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