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QUANTUM-THEORETICAL RE-INTERPRETATION
OF KINEMATIC AND MECHANICAL RELATIONS

W. HEISENBERG

The present paper seeks to establish a basis for theoretical quantum mechanics
founded exclusively upon relationships between quantities which in principle
are observable.

It is well known that the formal rules which are used in quantum
theory for calculating observable quantities such as the energy of the
hydrogen atom may be seriously criticized on the grounds that they
contain, as basic element, relationships between quantities that are
apparently unobservable in principle, e.g., position and period of
revolution of the electron. Thus these rules lack an evident physical
foundation, unless one still wants to retain the hope that the hitherto
unobservable quantities may later come within the realm of experi-
mental determination. This hope might be regarded as justified if the
above-mentioned rules were internally consistent and applicable to a
clearly defined range of quantum mechanical problems. Experience
however shows that only the hydrogen atom and its Stark effect are
amenable to treatment by these formal rules of quantum theory.
Fundamental difficulties already arise in the problem of ‘crossed
fields’ (hydrogen atom in electric and magnetic fields of differing
directions). Also, the reaction of atoms to periodically varying fields
cannot be described by these rules. Finally, the extension of the
quantum rules to the treatment of atoms having several electrons has
Proved unfeasible.

It has become the practice to characterize this failure of the quan-
tum-theoretical rules as a deviation from classical mechanics, since the
rules themselves were essentially derived from classical mechanics.
This characterization has, however, little meaning when one realizes

E.‘dito*r’s note. This paper was published as Zs. Phys. 33 (1925) 879-893. It was
Signed ‘Géttingen, Institut fiir theoretische Physik’.
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that the Einstein—Bohr frequency condition (which is valid in all cases)
already represents such a complete departure from classical mechanics,
or rather (using the viewpoint of wave theory) from the kinematics
underlying this mechanics, that even for the simplest quantum-
theoretical problems the validity of classical mechanics simply cannot
be maintained. In this situation it seems sensible to discard all hope of
observing hitherto unobservable quantities, such as the position and
period of the electron, and to concede that the partial agreement of the
quantum rules with experience is more or less fortuitous. Instead it
seems more reasonable to try to establish a theoretical quantum
mechanics, analogous to classical mechanics, but in which only re-
lations between observable quantities occur. One can regard the
frequency condition and the dispersion theory of Kramers! together
with its extensions in recent papers? as the most important first steps
toward such a quantum-theoretical mechanics. In this paper, we shall
seek to establish some new quantum-mechanical relations and apply
these to the detailed treatment of a few special problems. We shall
restrict ourselves to problems involving one degree of freedom.

1. In classical theory, the radiation emitted by a moving electron (in

the wave zone, i.e., in the region where € and § are of the same order
of magnitude as 1/r) is not entirely determined by the expressions

€ =

e . e .
302 [x[rv]], = W[Uf],

but additional terms occur in the next order of approximation, e.g.
terms of the form epy/rc3 which can be called ‘quadrupole radiation’.
In still higher order, terms such as evp2/rct appear. In this manner the
approximation can be carried to arbitrarily high order. (The following
symbols, have been employed: €, 9 are field strengths at a given
point, r the vector between this point and the position of the electron,
b the velocity and e the charge of the electron).

One may inquire about the form these higher order terms would
assume in quantum theory. The higher order approximations can
easily be calculated in classical theory if the motion of the electron is

1 H. A. Kramers, Nature 113 (1924) 673.

2 M. Born, Zs. f. Phys. 26 (1924) 379. H. A. Kramers and W. Heisenberg,
Zs. f. Phys. 31 (1925) 681. M. Born and P. Jordan, Zs. f. Phys. (in course of
publication) [33 (1925) 479; paper 7a].
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given in Fourier expansion, and one would expect a similar result in
quantum theory. This point has nothing to do with electrodynamics
put rather — and this seems to be particularly important — is of a
purely kinematic nature. We may pose the question in its simplest form
thus: Ifinstead of a classical quantity x(f) we have a quantum-theoretical
quantity, what quantum-theoretical quantity will appear in place of
x(£)%?

Before we can answer this question, it is necessary to bear in mind
that in quantum theory it has not been possible to associate the
electron with a point in space, considered as a function of time, by
means of observable quantities. However, even in quantum theory it
is possible to ascribe to an electron the emission of radiation. In order
to characterize this radiation we first need the frequencies which
appear as functions of two variables. In quantum theory these func-
tions are of the form

vin, n — a) = %{W(n) — W(n — a)},

and in classical theory of the form

(Here one has nk=J, where J is one of the canonical constants).
As characteristic for the comparison between classical and quantum
theory with respect to frequency, one can write down the combination

relations:
Classical:

v(n, a) + »(n, B) = v(n, « + B).
Quantum-theoretical:

v(n,n —a) +v(n —a,n —a — ) =v(n,n — a — )
or

v —B,n—oa—p) +rv(n,n—p) =vnn—a—p).

In order to complete the description of radiation it is necessary to
have not only the frequencies but also the amplitudes. The amplitudes
Mmay be treated as complex vectors, each determined by six inde-
Pendent components, and they determine both the polarization and
the phase. As the amplitudes are also functions of the two variables
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n and «, the corresponding part of the radiation is given by the follow-

ing expressions:
Quantum-theoretical :

Re{U(n, n — «) elolr, n-a)t}, (1)
Classical:
Re(@a(n) elotmat, 2)

At first sight the phase contained in U would seem to be devoid of
physical significance in quantum theory, since in this theory frequen-
cies are in general not commensurable with their harmonics. However,
we shall see presently that also in quantum theory the phase has a
definite significance which is analogous to its significance in classical
theory. If we now consider a given quantity x(f) in classical theory,
this can be regarded as represented by a set of quantities of the form

Q[a(n) eiw(n)cxt,

which, depending upon whether the motion is periodic or not, can be
combined into a sum or integral which represents x(¢):

+ oo
x(n, t) = X Ux(n) elomat
or N (2a)

+ oo
x(n,t) = [ Ux(n) eleMatdy,

A similar combination of the corresponding quantum-theoretical
quantities seems to be impossible in a unique manner and therefore
not meaningful, in view of the equal weight of the variables » and
n—a. However, one may readily regard the ensemble of quantities
A(n, n—oa)elo(n, n-0t a5 a representation of the quantity x(f) and then
attempt to answer the above question: how is the quantity x(¢)2 to be
represented?

The answer in classical theory is obviously:

=00

Bs(n) elombt = 3, A, Ng—y elo@) (+6-n)t 3)
—00
or
+ oo
= [ UsWp—n el0(M @+6-0)tdq, (4)

— 00
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SO that
+oo

#(t)2 = 35 Bp(n) elomst (5)

—0oQ

or, respectively,
+ oo

=/ Bp(n) elomptdp. (6)
In quantum theory, it seems that the simplest and most natural
assumption would be to replace equations (3) and (4) by:
“+ oo
53(”,” - ﬁ) elo(n, =)t — ¥ S)[(n’ o cx)g[(” — 1 — ﬁ) elo(n, n—g)t (7)

— Q0

or

+ oo
= [ U, n— ) A(n — o, n — B) elo(n, n—Atda, (8)

and in fact this type of combination is an almost necessary consequence
of the frequency combination rules. On making assumptions (7) and
(8), one recognizes that the phases of the quantum-theoretical % have
just as great a physical significance as their classical analogues. Only
the origin of the time scale and hence a phase factor common to all the
%A is arbitrary and accordingly devoid of physical significance, but
the phases of the individual 9 enter in an essential manner into the
quantity B.1 A geometrical interpretation of such quantum-theo-
retical phase relations in analogy with those of classical theory seems
at present scarcely possible.

If we further ask for a representation for the quantity x(¢)3 we find
without difficulty:

Classical:
+00 +4co
Cln, y) = T Xa, 5 Ua(n)Up(n) Ay—a—p(n). (9)
Quantum-theoretical:
@(”, ‘n-——y —
+o0 400
= ¥ YusAn, n—a)An—o, n—a—p)An—a—pg, n—y) (10)

Or the corresponding integral forms.

1
. Cf.also H. A. Kramers and W. Heisenberg, loc.cit. The phases enter essentially
"Mto the expressions used there for the induced scattering moment.
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In a similar manner, one can find a quantum-theoretical represen-
tation for all quantities of the form x(f)», and if any function f[x(¢))
is given, one can always find the corresponding quantum-theoretica]
expression, provided the function can be expanded as a power series
in x. A significant difficulty arises, however, if we consider two quanti-
ties x(¢), y(¢), and ask after their product x(¢)y(¢). If x(¢) is characterized
by %, and y(!) by 8B, we obtain the following representations for
x(8)y(2):

Classical:
+ o0
Co(n) = 2 Ua(n) Bp-a(n).
Quantum-theoretical:
+ oo
Cn,n—p)= TaAn, n — )B(n — a, n — B).

Whereas in classical theory x()y(t) is always equal to y(¢)x(t), this
is not necessarily the case in quantum theory. In special instances,
e.g., in the expression x(t)x(¢)2, this difficulty does not arise.

If, as in the question posed at the beginning of this section, one is
interested in products of the form v(¢)9(t), then in quantum theory
this product v9 should be replaced by 4(vi+9v), in order that v be
the differential coefficient of 4v2. In a similar manner it would always
seem possible to find natural expressions for the quantum-theoretical
mean values, though they may be even more hypothetical than the
formulae (7) and (8).

Apart from the difficulty just mentioned, formulae of the type (7),
(8) should quite generally also suffice to express the interaction of the
electrons in an atom in terms of the characteristic amplitudes of the
electrons.

2. After these considerations which were concerned with the kine-
matics of quantum theory, we turn our attention to the dynamical
problem which aims at the determination of the A, », W from the
given forces of the system. In earlier theory this problem was solved
in two stages:

1. Integration of the equation of motion

¥ + f(x) = 0. (1)
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2. Determination of the constants for periodic motion through
$pdg = $midx = J(= nh). (12)

If one seeks to construct a quantum-mechanical formalism
corresponding as closely as possible to that of classical mechanics,
it is very natural to take over the equation of motion (11) directly
into quantum theory. At this point, however, it is necessary - in
order not to depart from the firm foundation provided by those
quantities that are in principle observable — to replace the quantities
% and f(x) by their quantum-theoretical representatives, as given in
§ 1. In classical theory it is possible to obtain the solution of (11) by
first expressing x as a Fourier series or Fourier integral with unde-
termined coefficients (and frequencies). In general, we then obtain an
infinite set of equations containing infinitely many unknowns, or
integral equations, which can be reduced to simple recursive relations
for the U in special cases only. In quantum theory we are at present
forced to adopt this method of solving equation (11) since, as has
been said before, it was not possible to define a quantum-theoretical
function directly analogous to the function x(x, ).

Consequently the quantum-theoretical solution of (11) is only
possible in the simplest cases. Before we consider such simple examples,
let us give a quantum-theoretical re-interpretation of the determina-
tion, from (12), of the constant of periodic motion. We assume that
(classically) the motion is periodic:

+00
"=, aa(n)eicxw,,t; (]3)
hence

+ o0
mi = m Yu ax(n)icw,elo®st

— 0

and

+o0
g mzdx = § mi2 dt = 2nm I, an(n)a—x(n)oelwy,.

Furthermore, since a—x(n)=ax(n), as x is to be real, it follows that
+ o0
§mx.2 dt = Zﬂm Efx Iaa('n«)!2a2wn. (14)

In the earlier theory this phase integral was usually set equal to
an integer multiple of 4, i.e., equal to nA, but such a condition does
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not fit naturally into the dynamical calculation. It appears, even whep
regarded from the point of view adopted hitherto, arbitrary in the
sense of the correspondence principle, because from this point of view
the J are determined only up to an additive constant as multiples of
h. Instead of (14) it would be more natural to write

d d §
_ pe -2 d¢
dn (#%) dn s,
that is,
+o0 d
h = 2nm Eaaa(awn.mal?). (15)

Such a condition obviously determines the a, only to within a
constant, and in practice this indeterminacy has given rise to diffi-
culties due to the occurrence of half-integral quantum numbers.

If we look for a quantum-theoretical relation corresponding to (14)
and (15) and containing observable quantities only, the uniqueness
which had been lost is automatically restored.

We have to admit that only equation (15) has a simple quantum-
theoretical reformulation which is related to Kramers’ dispersion
theory:1

h = 4am Ea{la(n, n+ o) [2w(n,n + a) — |a(n,n — o) |20(n,n — a)}. (16)
0

Yet this relation suffices to determine the a uniquely since the unde-
termined constant contained in the qudntities a is automatically
fixed by the condition that a ground state should exist, from which no
radiation is emitted. Let this ground state be denoted by n¢; then we
should have a(ng, #o—a)=0 (for «>0). Hence we may expect that the
question of half-integer or integer quantization does not arise in a
theoretical quantum mechanics based only upon relations between
observable quantities.

Equations (I11) and (16), if soluble, contain a complete determi-
nation not only of frequencies and energy values, but also of quantum-
theoretical transition probabilities. However, at present the actual
mathematical solution can be obtained only in the simplest cases. In
many systems, e.g. the hydrogen atom, a particular complication

1 This relation has already been derived from dispersion considerations bY
W. Kuhn, Zs. Phys. 33 (1925) 408, and W. Thomas, Naturwiss. 13 (1925) 627-
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arises because the solutions correspond to motion which is partly
periodic and partly aperiodic. As a consequence of this property, the
quantum-theoretical series (7), (8) and equation (16) decompose into
a sum and an integral. Quantum-mechanically such a decomposition
into ‘periodic and aperiodic motion’ cannot be carried out in general.

Nevertheless, one could regard equations (11) and (16) as a satis-
factory solution, at least in principle, of the dynamical problem if
it were possible to show that this solution agrees with (or at any rate
does not contradict) the quantum-mechanical relationships which we
know at present. It should, for instance, be established that the
introduction of a small perturbation into a dynamical problem leads
to additional terms in the energy, or frequency, of the type found by
Kramers and Born — but not of the type given by classical theory.
Furthermore, one should also investigate whether equation (11) in
the present quantum-theoretical form would in general give rise to
an energy integral }m#24-U(x)=const., and whether the energy so
derived satisfies the condition AW =#hw, in analogy with the classical
condition »=0W/d]. A general answer to these questions would
elucidate the intrinsic connections between previous quantum-
mechanical investigations and pave the way toward a consistent
quantum-mechanics based solely upon observable quantities. Apart
from a general connection between Kramer’s dispersion formula and
equations (11) and (16), we can answer the above questions only in
very special cases which may be solved by simple recursion relations.

The general connection between Kramers’ dispersion theory and
our equations (11) and (16) is as follows. From equation (11) (more
precisely, from the quantum-theoretical analogue) one finds, just as
in classical theory, that the oscillating electron behaves like a free
electron when acted upon by light of much higher frequency than
any eigenfrequency of the system. This result also follows from
Kramers’ dispersion theory if in addition one takes account of equation
(16). In fact, Kramers finds for the moment induced by a wave of
the form E cos 2st:

2 2 |[lan,n+ «)2(n,n + )
M — g2 e L _
eEcosthh % l 2 Bl ) — P

la(n, n — a)|2(n, n — a) }
N v2(n, n — o) — ¥2 ’
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so that for ¥>»(n, n+a),

2FEe2 cos 2nvi

M= — 3 Ya{la(n, n + «)|2(n,n + «)
14 h 0

— la(n, n — a)|2v(n, n — o)},
which, due to equation (16), becomes

¢2E cos 2nvt

4n2my2

M= —

3. As a simple example, the anharmonic oscillator will now be
treated:

%+ wlx + Ax?2 = 0. (17)
Classically, this equation is satisfied by a solution of the form
% = Aag + ay €os wt + Aag cos 2wt + A2ag cos 3wt + ... A7 la; cos Twt,

where the a are power series in A, the first terms of which are inde-
pendent of 4. Quantum-theoretically we attempt to find an analogous
expression, representing x by terms of the form
Aa(n, n); a(n,n — 1) cos w(n, n — 1)¢;
Aa(n, n — 2) cos w(n, n — 2)t;
. A7 1a(n, m — 1) cos w(n, n — 1)t ....

The recursion formulae which determine the @ and w (up to, but
excluding, terms of order 1) according to equations (3), (4) or (7), (8) are:

Classical:
wiao(n) + 4al(n) = O;
— w? 4+ 0} =0;
(— 40? + wg)as(n) + $ai = 0; (18)
(— 9w? + w?)as(n) + ajas = 0;
Quantum-theoretical :
wiao(n) + }a(n + 1, n) + a2(n, n — 1)] = 0;
— w2(n,n — 1) + 0l = 0;
[—w?(n, n—2)+0lla(n, n—2)+}[a(n, n—a(n—1, n—2)] = 0; (19)
[— w?(n, n — 3) + wila(n, n — 3)
+ila(n, n—1)a(n—1, n—3)]+4[a(n, n—2)a(n—2, n—3)] = 0;

----------------------
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The additional quantum condition is:
Classical (J=mnh):

d -k
l= anE}— E 17?a:2w.
Quantum-theoretical:
h=mnam3[lan + 1, n)2wmn + 7, n) — |an, n — 7)|2 w(n, n — 1)].
0

We obtain in first order, both classically and quantum-mechanically

(n + const)h

ain) or a(n,nm — 1) = p—

(20)

In quantum theory, the constant in equation (20) can be determined
from the condition that a(ng, no—1) should vanish in the ground
state. If we number the # in such a way that in the ground state » is
zero, i.e. no=0, then a2(n, n—1)=nh/amwy.

It thus follows from the recursive relations (18) that in classical
theory the coefficient a; has (to first order in 1) the form x(r)nir
where x(7) represents a factor independent of #. In quantum theory,
equation (19) implies

a(n,n — v) = x(t) l/

n!
(n —1)!’ (el

where x(r) is the same proportionality factor, independent of .
Naturally, for large values of # the quantum-theoretical value of a,
tends asymptotically to the classical value.

An obvious next step would be to try inserting the classical ex-
pression for the energy mx2+imwlx2+3imix3=W, because in the
present first-approximation calculation it actually is constant, even
when treated quantum-theoretically. Its value is given by (19), (20)
and (21) as:

Classical:
W = %hwo/z:rc. (22)
Quantum-theoretical, from (7) and (8):

W = (n + })hwo/2n (23)

(terms of order 42 have been excluded).
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Thus from the present viewpoint, even the energy of a harmonic
oscillator is not given by ‘classical mechanics’, i.e., by equation (22),
but has the form (23).

The more precise calculation, taking into account higher order
approximations in W, a, w will now be carried out for the simpler
example of an anharmonic oscillator %+ wix-+Ax3=0.

Classically, one can in this case set

X = aj cos wt + Aag cos 3wt + A2as cos Swt + ...;

quantum-theoretically we attempt to set by analogy
a(n, n — 1) cos w(n, n — 1)¢; Aa(n, n — 3) cos w(n, n — 3)¢;

The quantities a4 are once more power series in 2 whose first term
has the form, as in equation (21),

n!

a(n,n — 1) = x(1) V ’

(n — 7)!
as one finds by evaluating the equations corresponding to (18) and
(19).

If the evaluation of w and 4 from equations (18) and (19) is carried
out to order A2 or A respectively, one obtains

3nh 342
ym—1) = — A2 : - (17n2 + 7 ww (24
i, ) =t 4 8rwim 256wym2m? e - ) (4
nh 3nh
,n—1) = V—vm (1 — A o ) 25
Bl ) WM 167wym T ()
a(n, n — 3) 1 l/ L ( 1)(n — 2)
yn—3) = n(n — — 2):
32 1 a3wlms3 )

-(l _ 39(n — l)h). (26)

32nwim
The energy, defined as the constant term in the expression
Ima2 + Imojx? + tmix4,

(I could not prove in general that all periodic terms actually vanish,
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put this was the case for all terms evaluated) turns out to be

(n + 3)hwo 3(n% + n + 4)A?
= A
i 2n ™ 8 4n2wlm
43
— B iy (TR S g (@)

This energy can also be determined using the Kramers—Born ap-
proach by treating the term }maAx4 as a perturbation to the harmonic
oscillator. The fact that one obtains exactly the same result (27)
seems to me to furnish remarkable support for the quantum-mecha-
nical equations which have here been taken as basis. Furthermore, the
energy calculated from (27) satisfies the relation (cf. eq. 24):

wn, n — 1) 1

= 5 W) — W — 1)),

which can be regarded as a necessary condition for the possibility of a
determination of the transition probabilities according to equations
(11) and (16).

In conclusion we consider the case of a rotator and call attention
to the relationship of equations (7), (8) to the intensity formulae for
the Zeeman effect! and for multiplets.2

Consider the rotator as represented by an electron which circles a
nucleus with constant distance 4. Both classically and quantum-
theoretically, the ‘equations of motion’ simply state that the electron
describes a plane, uniform rotation at a distance @ and with angular
velocity w about the nucleus. The ‘quantum condition’ (16) yields,
according to (12),

h = — (2nmaw),
n

and according to (16)

b = 2nm{aaln + 1, n) — a%ln, 1 — 1)},

- S. Goudsmit and R. de L. Kronig, Naturwiss. 13 (1925) 90; H. Honl, Zs. £,

Phys. 31 (1925) 340.

SitR- de L. Kronig, Zs. f. Phys. 31 (1925) 885; A. Sommerfeld and H. Hoénl,
Zungsber, d. Preuss. Akad. d. Wiss. (1925) 141; H. N. Russell, Nature 115

11925) 835,
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from which, in both cases, it follows that

h(n + const)
2nma?

wn,n —1) =

The condition that the radiation should vanish in the ground state
(n9=0) leads to the formula

hn

wn,n—1) = e (28)

The energy is
W = imv2,
or, from equations (7), (8),
m wi(n, n—1) + wi(n+1, n) h?2
— _ __ g2 — 2

w="4 ! i (P ntd), (29

which again satisfies the condition w(n, n—1)=(27/h)[W (n) — W (n—1)).

As support for the validity of the formulae (28) and (29), which
differ from those of the usual theory, one might mention that, ac-
cording to Kratzer,! many band spectra (including spectra for which
the existence of an electron momentum is improbable) seem to require
formulae of type (28), (29), which, in order to avoid rupture with the
classical theory of mechanics, one had hitherto endeavoured to explain
through half-integer quantization.

In order to arrive at the Goudsmit—Kronig-Honl formula for the
rotator we have to leave the field of problems having one degree of
freedom. We assume that the rotator has a direction in space which is
subject to a very slow precession o about the z-axis of an external field.
Let the quantum number corresponding to this precession be m. The
motion is then represented by the quantities

z: am,n — 1;m,m)coswn,n— 1)
X+ iy: bin,n — 1;m, m — 1)elemn-tolk.
b(n n—1:m—1 m) ei[*w(n,n*1)+g]t-

The equations of motion are simply

1 Cf. for example, B. A. Kratzer, Sitzungsber. d. Bayr. Akad. (1922) p. 107



12 QUANTUM-THEORETICAL RE-INTERPRETATION 275
Because of (7) this leads to1l
%{%az(n, n—1; m, m)+b2(n, n—1;m, m—1)+b2(n, n—1; m, m—+1)
+ 3a%(n 4+ 1, n;m,m) + 2(n + 1, n; m — 1, m)
+ 2n 4+ 1, n; m + 1, m)} = a2, (30)
an,m — 1;m,man — 1,n — 2; m, m)
=b(n,n—1;mm+ 1)b(n — 1,n —2;m + 1, m)
+b(m,n— 1;mm— 1)b(n — 1,n —2;m — 1,m). (31)

One also has the quantum condition from (16):

2am{bi(n, n — 1;m, m — \on, n — 1)

—b3m,n — 1;m — 1, m)w(n, n — 1)} = (m + const)h. (32)
The classical relations corresponding to these equations are

Yag + b7 + 0%, = a?;
1ak = b1b_q; (33)
2am(b%, — b2 )w = (m + const)h.

They suffice (up to the unknown constant added to m) to determine
g, b1, b_1 uniquely.

The simplest solution of the quantum-theoretical equations (30),
(31), (32) which presents itself is:

bn,m — 1, m, m — 1)=a1/(”+m+ 1)(n+m);
4n + P

b(n,n_];m_l,m)za"/(”—m)(n—m+l) ;
4n + P

: VY mt+m+ 1) — m)

a(n,n—l,m,m)__a/ " b .

These expressions agree with the formulae of Goudsmit, Kronig and
Honl. 1t is, however, not easily seen that these expressions represent
the only solution of equations (30), (31), (32), though this would seem
likely to me from consideration of the boundary conditions (vanishing

k Equation (30) is essentially identical with the Ornstein—Burger sum rules.
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of 2 and b at the ‘boundary’; cf. the papers of Kronig, Sommerfely
and Honl, Russell quoted above).

Considerations similar to the above, applied to the multiplet ip.
tensity formulae, lead to the result that these intensity rules are ip
agreement with equations (7) and (16). This finding may again be
regarded as furnishing support for the validity of the kinematic
equation (7).

Whether a method to determine quantum-theoretical data using
relations between observable quantities, such as that proposed here,
can be regarded as satisfactory in principle, or whether this method
after all represents far too rough an approach to the physical problem
of constructing a theoretical quantum mechanics, an obviously very
involved problem at the moment, can be decided only by a more
intensive mathematical investigation of the method which has been
very superficially employed here.,



