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QUANTUM THEORY AND FIVE-DIMENSIONAL
RELATIVITY THEORY∗

Oskar Klein

in Copenhagen, Denmark
Received April 28, 1926

In the following pages I want to point out a simple connection between the
proposed theory of Kaluza1 regarding the connection between electromagnetism
and gravitation on one hand and the suggested method of de Broglie2 and
Schrödinger3 for the treatment of quantum problems on the other hand. Kaluza’s
theory attempts to connect the ten gravitational potentials gik of Einstein and
the four electromagnetic potentials ϕi with the coefficients γik of a line element
of a Riemannian space, which besides the four usual dimensions also contains
a fifth dimension. The equations of motion of charged particles then take
the form of equations of geodesic lines also in electromagnetic fields. When
these are interpreted as wave equations by considering the matter as a kind of
propagating wave, then one is led almost automatically to a partial differential
equation of second order which can be regarded as a generalization of the usual
wave equation. If, now, such solutions to these equations are considered in
which the fifth dimension appears purely harmonically with a definite period
related to Planck’s constant, one comes directly to the above-mentioned quantum
theoretical methods.

1. Five-Dimensional Theory of Relativity

I begin by giving a short description of the five-dimensional relativity theory
which connects closely to Kaluza’s theory but differs in some points from
it. Consider a five-dimensional Riemannian line element, for which we

∗Original in Z. Phys. 37 (1926) 895, reproduced here with permission from Springer–Verlag.
Translated from the German by Mrs Uta Schuch and Dr. Lars Bergström.
1Th. Kaluza, Sitzungdber. Berl. Akad. (1921), p. 966.
2L. de Broglie, Ann. Phys. (10) 3 (1925) 22. Thesis, Paris 1924.
3E. Schrödinger, Ann. Phys. 79 (1926) 361 and 489.
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postulate a meaning independent of the system of coordinates. We write:

dσ =
√∑

γikdxidxk, (1)

where the symbol
∑

, as everywhere in the following, describes a summa-
tion over the doubly appearing indices from 0 to 4. Here x0 . . . x4 denote
the five coordinates of the space. The 15 quantities γik are the covariant
components of a five-dimensional symmetric tensor. In order to transform
these to the quantities gik and ϕi of the usual relativity theory we have to
make certain special assumptions. First, four of the coordinates, let us say
x1, x2, x3, x4, always have to characterize the usual space–time. Secondly,
the quantities γik must not depend on the fifth coordinate x0. From this
follows that the allowed coordinate transformations are restricted to the
following group4:

x0 = x0′ + ψ0(x
1′
, x2′

, x3′
, x4′

),

xi = ψi(x
1′
, x2′

, x3′
, x4′

) (i = 1, 2, 3, 4).

}
(2)

In fact, we should have written a constant times x0′
instead of x0′

. The
restriction of the constant to the value unity is, however, quite inessential.

As one can easily show, γ00 is invariant under the transformations
(2). The assumption γ00 = const. is therefore allowed. It is tempting to
suggest that only the ratios of γik have physical significance. In this case
this assumption is only a convention that is always possible. Leaving the
unit of measure of x0 indefinite for the time being, we set:

γ00 = α. (3)

One shows furthermore that the following differential quantities remain
invariant under the transformations (2), namely4:

dϑ = dx0 + γ0i

γ00
dxi, (4)

ds2 =
(

γik − γ0iγ0k

γ00

)
dxidxk. (5)

4Cf. H. A. Kramers, Proc. Amsterdam 23, Nr. 7, 1922, where a discussion of a simple proof
for the invariance of dϑ and ds2 is given that is similar to the following considerations.
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In these expressions the doubly appearing indices should be summed over
from 1 to 4. For such sums we will, as usual, omit the summation sign. The
quantities dϑ and ds are connected to the line element in the following way:

dσ2 = αdϑ2 + ds2. (6)

Because of the invariance of dϑ and γ00, it now follows that the four γ0i(i �=
0), if x0 is held fixed, transform as the covariant components of an ordinary
four-vector. If x0 is also transformed, there appears additively the gradient
of a scalar. This means that the quantities:

∂γ0i

∂xk
− ∂γ0k

∂xi
,

transform as the covariant components Fik of the electromagnetic field
tensor. The quantities γ0i are thus from the point of view of invariance
theory behaving as the electromagnetic potentials ϕi. Therefore we assume

dϑ = dx0 + βϕidxi, (7)

that is

γ0i = αβϕi (i = 1, 2, 3, 4), (8)

where β is a constant and where the ϕi are so defined that in orthogonal
Galilean coordinates:

(ϕx, ϕy, ϕz) = A,

ϕt = −cV,

}
(9)

where A is the ordinary vector potential, V the ordinary scalar potential
and c represents the speed of light.

We want to identify the differential ds with the line element of the usual
standard relativity theory. We thus set

γik = gik + αβ2ϕiϕk, (10)

where we want to choose gik so that in orthogonal Galilean coordinates:

ds2 = dx2 + dy2 + dz2 − c2dt2. (11)

Hereby the quantities γik are brought back to known quantities. The problem
is now to find such field equations for the quantities γik that gik and ϕi for
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sufficient accuracy are given by the field equations of the standard relativity
theory. We do not want to examine this difficult problem further here but we
want to show that the ordinary field equations can be easily embraced from
the viewpoint of the five-dimensional geometry. We form the invariant:

P =
∑

γik




∂

{
iµ

µ

}
∂xk

−
∂

{
ik

µ

}
∂xµ

+
{
iµ

ν

} {
kν

µ

}
−

{
ik

µ

} {
µν

ν

}
, (12)

where γik are the contravariant components of a five-dimensional funda-

mental metric tensor and where

{
rs

i

}
represents the Christoffel three-index

symbol, that is {
rs

i

}
= 1

2

∑
γiµ

(
∂γµr

∂xs
+ ∂γµs

∂xr
− ∂γrs

∂xµ

)
. (13)

In the expression for P we have in mind that all the quantities are
independent of x0 and that γ00 = α.

Let us now consider the integral, evaluated over a closed area of the
five-dimensional space:

J =
∫

P
√−γdx0dx1dx2dx3dx4, (14)

where γ stands for the determinant of the γik. We form δJ by varying the
quantities γik and ∂γik

∂xl where their boundary values are not to be changed.
Here α should be considered to be a constant. The variational principle

∂J = 0, (15)

then leads to the following equations:

Rik − 1

2
gikR + αβ2

2
Sik = 0 (i, k = 1, 2, 3, 4), (16a)

and

∂
√−gFiµ

∂xµ
= 0 (i = 1, 2, 3, 4), (16b)

 T
he

 O
sk

ar
 K

le
in

 M
em

or
ia

l L
ec

tu
re

s 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 K

A
IN

A
N

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/1

0/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



January 23, 2014 16:1 9in x 6in The Oskar Klein Memorial Lectures 1988–1999 b1692-p1c6

Quantum Theory and Five-Dimensional Relativity Theory 73

where R represents Einstein’s curvature invariant, Rik the contravariant
components of Einstein’s curvature tensor, gik the contravariant compo-
nents of Einstein’s fundamental tensor, Sik the contravariant components
of the electromagnetic energy-momentum tensor, g the determinant of the
gik and finally Fiµ the contravariant components of the electromagnetic
field tensor. If we set

αβ2

2
= κ, (17)

where κ represents the gravitational constant used by Einstein, we see that
the equations (16a) are in fact identical with the equations of relativity
theory for the gravitational field, and (16b) are identical with the generalized
Maxwell’s equations of relativity theory for a matter-free field point.5

If we restrict ourselves to the usual schematic way of treating matter in
electron theory and relativity theory, we can obtain the usual equations for
the non-matter-free case in a similar way. We replace P in (14) by

P + κ
∑

γik�
ik.

In order to define the �ik, we first want to consider the tensor appropriate
for an electron or a hydrogen nucleus:

ϑik = dxi

dl

dxk

dl
, (18)

where the dxi represent the changes of position of the particle, and dl is a
certain invariant differential. The �ik should be equal to the sums of the ϑik

for the different particles, per unit volume. We then get back to equations
of the ordinary type which become identical to the ordinary field equations,
if we set:

v0
dτ

dl
= ± e

βc
, (19)

dτ

dl
=

{√
M√
m

, (20)

5See, e.g., B. W. Pauli, Relativitätstheorie, pp. 719 and 724.
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where in general

vi =
∑

γiµ

dxµ

dl
(21)

are the covariant components of the five-dimensional velocity vector vi,
where

vi = dxi

dl
. (22)

Further, e represents the electric elementary quantum, M and m the masses
of the hydrogen nucleus and electron, respectively. Here the upper symbol
pertains to the nucleus, the lower to the electron. In addition,

dτ = 1

c

√
−ds2

is the differential of proper time.
From the field equations, there follow naturally in an ordinary way the

equations of motion for the matter particles and the continuity equation. The
calculations which lead to this can be easily summarized from our point of
view. As one can easily see, our field equations are, namely, equivalent to
the following 14 equations:

Pik − 1

2
γikP + κ�ik = 0 (23)

(i, k = 0, 1, 2, 3, 4, but not both of them zero), where the Pik are the
contravariant components of the reduced five-dimensional curvature tensor
(corresponding to the Rik). The equations in question now follow by
forming the divergence of (23). From this follows that the charged particles
move on five-dimensional geodesic lines which satisfy the conditions
(19) and (20).6 As one sees immediately, these conditions are therefore
compatible with the equations of geodesic lines because x0 does not appear
in γik.

Here must be recalled that there really do not exist sufficient reasons
for the exact validity of Einstein’s field equations. Nevertheless, it might

6The special values of dτ
dl

are of course in this connection without significance. Important

is here only dτ
dl

= const.
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not be without interest that all the 14 field equations can be summarized in
such an easy way from the point of view of Kaluza’s theory.

2. The Wave Equation of the Quantum Theory

We are now going to relate the theory of stationary states, and the
corresponding characteristic deviations from the mechanics which appear
in the modern quantum theory, to the five-dimensional theory of relativity.
Let us consider for this purpose the following differential equation which
should be related to our five-dimensional space and which can be considered
as a simple generalization of the wave equation:

∑
aik

(
∂2U

∂xi∂xk
−

∑ {
ik

r

}
∂U

∂xr

)
= 0. (24)

Here the aik signify the contravariant components of a five-dimensional
symmetric tensor which should be certain functions of the coordinates. The
equation (24) is valid independently of the coordinate system.

Let us first consider a wave propagation determined by (24) which
corresponds to the limiting case of geometrical optics. We arrive at this if
we set:

u = Aeiω�, (25)

and assume ω so large that in (24) only those terms have to be taken into
account that are proportional to ω2. We then obtain:∑

aik ∂�

∂xi

∂�

∂xk
= 0, (26)

an equation which corresponds to the Hamilton–Jacobi partial differential
equation of mechanics. If we set:

pi = ∂�

∂xi
, (27)

the differential equations for the rays, as is well known, can be written in
the following Hamiltonian form:

dpi

−∂H
∂xi

= dxi

∂H
∂pi

= dλ, (28)
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where

H = 1

2

∑
aikpipk. (29)

From (26) there also follows that

H = 0. (30)

A different representation of this equation which corresponds to the
Lagrangian form, follows through the circumstance that the rays can be
regarded as geodesic zero lines of the differential form:∑

aikdxidxk,

where the aik represent reciprocal quantities to the aik, that is

∑
aiµakµ = δk

i =
{

1, i = k

0, i �= k
. (31)

If we now set ∑
aikdxidxk = µ(dϑ)2 + ds2, (32)

we can achieve, by an appropriate choice of the constant µ, that our ray
equations become identical to the equations of motion of charged particles.
If we set, in order to see this:

L = 1

2
µ

(
dϑ

dλ

)2

+ 1

2

(
ds

dλ

)2

, (33)

there follows

p0 = ∂L

∂
dx0

dλ

= µ
dϑ

dλ
, (34)

and

pi = ∂L

∂
dxi

dλ

= ui

dτ

dλ
+ βp0ϕi (i = 1, 2, 3, 4), (35)

where u1 . . . u4 represent the covariant components of the ordinary velocity
vector. The ray equations now have the form:

dp0

dλ
= 0, (36a)
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dpi

dλ
= 1

2

∂gµν

∂xi

dxµ

dλ

dxν

dλ
+ βp0

∂ϕµ

∂xi

dxµ

dλ
(i = 1, 2, 3, 4). (36)

From

µdϑ2 + ds2 = µdϑ2 − c2dτ2 = 0,

there follows

µ
dϑ

dτ
= c

√
µ. (37)

Since, according to (34) and (36a), dϑ
dλ

and therefore also dτ
dλ

are constant,
we can choose λ such that

dτ

dλ
=

{
M for the hydrogen nucleus
m for the electron.

(38)

Furthermore, in order to get to the ordinary equations of motion, we have
to assume:

βp0 =




+e

c
for the hydrogen nucleus

−e

c
for the electron.

(39)

From (37) there follows then:

µ =




e2

β2M2c4 for the hydrogen nucleus

e2

β2m2c4 for the electron.

(40)

The equations (35) and (36) then completely agree with the ordinary
equations of motion of charged particles in gravitational fields and
electromagnetic fields. In particular, the quantities pi, defined according
to (35), are identical with the generalized momenta defined in the usual
way, which is important for the following considerations. Since we can still
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choose β arbitrarily, we will set:

β = e

c
. (41)

It then follows simply that

p0 =
{

+1 for the hydrogen nucleus

−1 for the electron.
(39a)

µ =




1

M2c2 for the hydrogen nucleus

1

m2c2 for the electron.

(40a)

As one sees, for the square root in (37) we have to choose the positive
sign in the case of the nucleus and the negative sign in the case of the
electron. This is indeed rather unsatisfactory. But the fact that one obtains
for a single value of µ two different classes of rays which in a certain way
are related to each other like positively and negatively charged particles,
could be understood as a hint that it might be possible to change the wave
equation so that the equations of motion for both kinds of particles follow
from a single set of values of the coefficients. We do not now want to enter
into this question further, but are going to consider more closely the wave
equation that follows from (32) in the case of the electron.

Since for the electron it was assumed that p0 = −1, as a consequence
of (27) we have to set:

� = −x0 + S(x1, x2, x3, x4). (42)

De Broglie’s theory now follows if we look for the standing waves
compatible with the wave equation corresponding to a certain value of ω

and thereby assume that the wave propagation proceeds according to the
laws of geometrical optics. For that purpose we need the well-known law of
the conservation of phase, which immediately follows from (28) and (30).
Namely, it follows that

d�

dλ
=

∑ ∂�

∂xi

dxi

dλ
=

∑
pi

∂H

∂pi

= 2H = 0. (43)
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The phase is thus carried along by the wave. Let us now consider the
simple case where � can be split into two parts, one of which depends only
on a single coordinate, let us say x, which swings back and forth periodically
with time. Then, a standing wave will be possible, which is characterized
by the fact that a harmonic wave represented at a certain moment by (25)
after one period in x meets in phase with that wave which results from the
same solution (25) by inserting the new values of x0, x2, x3, x4. Because
of the conservation of phase, the condition for this is simply:

ω

∮
pdx = n2π, (44)

where n is an integer. If we set:

ω = 2π

h
, (45)

where h represents Planck’s constant, the ordinary quantization condition
for a separable coordinate then results. The analogous situation is of
course true for an arbitrary periodic system. The ordinary quantum theory
of periodic systems thus corresponds completely to the treatment of
interference phenomena through the assumption that the waves propagate
according to the laws of geometrical optics. It may also be emphasized that
because of (42), the relations (44), (45) are invariant under the coordinate
transformations (2).

Let us now also consider the equation (24) in the case where ω is not so
large so that we only have to take into account terms to the second power
in ω. We thereby restrict ourselves to the simple case of an electrostatic
field. We then have in Cartesian coordinates:

dϑ = dx0 − eV dt,

ds2 = dx2 + dy2 + dz2 − c2dt2.

}
(46)

Therefore there follows

H = 1

2
(p2

x + p2
y + p2

z) − 1

2c2 (pt + eVp0)
2 + m2c2

2
p2

0. (47)

In equation (24) we can neglect the quantities that are proportional to{
ik

τ

}
, since according to (17) the three-index symbols are in this case small
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quantities proportional to the gravitational constant κ. We therefore obtain7

�U − 1

c2

∂2U

∂t2 − 2eV

c2

∂2U

∂t∂x0 +
(

m2c2 − e2V 2

c2

)
∂2U

∂x02 = 0. (48)

Since V depends only on x, y, z, we can set for U in agreement with (42)
and (45):

U = e
−2πi

(
x0
h

−νt
)
ψ(x, y, z). (49)

This inserted in (48), yields

�ψ + 4π2

c2h2 [(hν − eV )2 − m2c4]ψ = 0. (50)

If we set additionally:

hν = mc2 + E, (51)

we obtain the equation given by Schrödinger,8 whose standing waves
correspond, as known, to the values of E which are identical to the
energy values calculated from Heisenberg’s quantum theory. As one sees,
E is in the limiting case of geometrical optics equal to the mechanical
energy defined in the usual way. As Schrödinger emphasized, the frequency
condition says, according to (51), that the light frequencies belonging to
the system are equal to the differences that are formed from the different
values of the frequency ν.

3. Final Remarks

Like the papers of de Broglie, the above considerations have arisen from
the endeavour to use the analogy between mechanics and optics, which

7Except for the appearance of x0, which is negligible for this application, this equation
differs from the Schrödinger equation by the way in which the time appears in (48). In
support of this form of the quantum equation one can mention, in the case where V depends
harmonically on time, that this equation has solutions which correspond to the dispersion
theory of Kramers as do Schrödinger’s solutions to the quantum theory of spectral lines,
which can be shown by a simple perturbation calculation. I owe this remark to Dr. W.
Heisenberg.
8Schrödinger, Ref. 3.
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appears in the Hamiltonian method, for a deeper understanding of quantum
phenomena. The similarity of conditions for the stationary states of an
atomic system to the interference phenomena of optics indeed seems to
indicate that this analogy has a real physical significance. Now, concepts
such as point charge and material point are indeed strange in classical field
physics. Of course, the hypothesis has often been maintained that the matter
particles have to be interpreted as special solutions of field equations, which
determine the gravitational field and the electromagnetic field. It is tempting
to relate the mentioned analogy to this concept. Because according to this
hypothesis, it is really not so strange that the motion of material particles
has similarities to the propagation of waves. The analogy under discussion,
however, is incomplete, as long as one considers the wave propagation in a
space of only four dimensions. This already appears in the variable speed of
material particles. But if one imagines, however, the observed motion as a
kind of projection on the space–time of a wave propagation, which proceeds
in a space of five dimensions we can, as we saw, make the analogy complete.
In mathematical terms this means that the Hamilton–Jacobi equation cannot
be interpreted as a characteristic equation of a four-dimensional but rather
of a five-dimensional wave equation. In this way one is led to Kaluza’s
theory.

Although the introduction of a fifth dimension in our physical con-
siderations might seem strange at the outset, a radical modification of
the geometry based upon the field equations is suggested in a totally
different way by the quantum physics. For, as is well known, it is less
and less probable that the quantum phenomena allow a unified space–time
description, whereas the possibility of describing these phenomena by a
system of five-dimensional field equations probably cannot be excluded
a priori.9 Whether there is something real behind these indications of
possibilities, the future of course will have to decide. In any case it must be
emphasized that the way of treatment attempted in this note, concerning the
field equations as well as the theory of stationary states, has to be regarded
as provisional. This is in particular true for the schematic way of treating
matter, mentioned on page 71, as well as the circumstance that the two kinds

9Remarks of this kind, which Prof. Bohr has made on several occasions, have had a decisive
influence on the creation of the present note.
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of charged particles are treated by different equations of Schrödinger’s type.
The question is also left quite open whether one can be content with the 14
potentials when describing physical processes, or whether the Schrödinger
method means the introduction of a new state quantity.

I have been occupied with the considerations presented in this note at
the Physical Institute of the University of Michigan, Ann Arbor, as well as
at the here present institute for theoretical physics. At this point I also want
to express my warmest thanks to Prof. H. M. Randall and Prof. N. Bohr.
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