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Abstract

It will be shown that the familiar components of the terms of a molecule; the energy of electronic motion, of the nuclear
vibration and of the rotation, correspond systematically to the terms of a power series in the fourth root of the ratio of
electron mass to (average) nuclear mass. The treatment yields among other things an equation for the rotation, which
represents a generalization of the treatment of Kramers and Pauli (top with built-in fly-wheel). Furthermore, there
appears a justification of the considerations of Franck and Condon on the intensity of band lines. The relationships
are illustrated for the diatomic molecule.

Introduction

The terms of molecular spectra are usually made up of parts of various orders of magnitude; the largest con-
tribution comes from the electronic motion about the nuclei, then follows the contribution of the nuclear vibration,
and finally that from the nuclear rotation. The basis for the possibility of such a classification obviously rests in the
comparative magnitudes of nuclear and electronic masses. From the standpoint of the old quantum theory, which
computed stationary states with the aid of classical mechanics, this is the concept applied by Born and Heisenberg
[1]; it was shown that the energy terms appear as the terms of increasing order with respect to the ratio

√
m/M, where

m is the electronic mass and M an average nuclear mass. Thereby, however, nuclear rotation and vibration both appear
in the second order, which contradicts empirical findings (for small rotational quantum numbers).

Here the problem will be approached anew from the standpoint of quantum mechanics.1 It then becomes necessary
to make our development with respect to (m/M)1/4 rather than with respect to

√
m/M, so as to obtain the natural order

of energy terms. The considerations also become much simpler and more transparent than in the old theory. The
nuclear vibrations correspond to terms of second order and the rotations to fourth order in the energy, while the first
and third order terms vanish. The absence of the first order terms is related to the existence of an equilibrium position
of the nuclei, in which the electronic energy for stationary nuclei is at a minimum. The fourth order terms for the
rotational motion illustrate the generalization of the treatment of Kramers and Pauli [2] in which the the behaviour of
a molecule is compared to that of a top with a built-in fly-wheel. In order to determine the eigenfunctions and thereby
the transition probabilities only to the zeroth approximation, the energy calculation must be carried out to terms of
fourth order (rotations). One obtains expressions for the probabilities of simultaneous jumps of electronic, vibrational
and rotational quantum number through which the representations developed by Franck [3] and elaborated by Condon
[4] may be given precise interpretation.
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The approximations to higher than fourth order will not be treated in this work; they correspond to coupling among
the three basic types of motion. A calculation of this effect is only meaningful for simultaneous consideration of all
degeneracies of electronic motion for stationary nuclei, especially the Heisenberg resonance degeneracy which arises
from the equivalence of electrons (also possibly of some nuclei) and in diatomic molecules, from the degeneracy of
the eigenrotation about the internuclear axis; these complicated considerations will be forgone here.

As an example we will consider diatomic molecules in detail, using not only the general method but also another
utilising the separation of variables in which the rotation becomes significant even in the zeroth order approximation,
as Born and Hückel [5] have done it in the older quantum theory.

Part I. Notation and Definitions

We denote the mass and rectangular coordinates of the electrons by m, xk, yk, zk and of the nuclei by Ml, Xl,Yl,Zl.
Letting M be any average value of the Ml, we set

κ =

( m
M

)1/4
(1)

and
Ml =

M
µl

=
m
κ4µl

; (2)

the µl being dimensionless numbers of order of magnitude 1. Let the potential energy of the system be

U(x1, y1, z1, x2, y2, z2, . . . ; X1,Y1,Z1, X2,Y2,Z2, . . . ) = U(x, X) (3)

where we denote by x the totality of electronic coordinates and by X, that of the nuclear coordinates. The function
U depends only on the relative positions of the particles; however, we make no use of its particular form (Coulomb’s
law). The kinetic energy of the electrons is represented by the operator

TE = −
h2

8π2m

∑
x

∑
k

∂2

∂x2
k

(4)

where the symbol
∑

x

denotes the sum which arises from the above expresion by cyclic permutation of x, y and z.

The kinetic energy of the nuclei is

TK = −κ4 h2

8π2m

∑
X

∑
l

µl
∂2

∂X2
l

. (5)

The total energy is represented by the operator

H = H0 + κ4H1 (6)

where

TE + U = H0

(
x,
∂

∂x
; X

)
TK = κ4H1

(
∂

∂X

)
. (7)

We introduce now, in place of the rectangular coordinates of the nuclei, 3N − 6 functions

ξi = ξi(X) (8)
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which denote the relative positions of the nuclei with respect to one another, and 6 functions

θi = θi(X) (9)

which determine the position and orientation of the nuclear configuration in space. One can in a symmetrical fashion
introduce the rectangular coordinates X̄l, Ȳl, Z̄l of the nuclei relative to the instantaneous principal axes of inertia;
between these there are 6 relations: ∑

l

MlX̄l = 0 · · ·
∑

l

MlȲlZ̄l = 0 . . .

One can thus express the X̄l by the 3N − 6 independent parameters ξ1, ξ2, . . . :

X̄l = X̄l(ξ), . . .

There then exist transformations between the original and the new coordinates, of the form

Xl = X0 +
∑

y

αxy(θ, φ, ψ)Ȳl(ξ); (10)

X0,Y0,Z0 are the coordinates of the center of mass and the αxy are the coefficients of the orthogonal rotation matrix,
and are thus known functions of the Eulerian angles θ, φ, ψ. The quantities X0,Y0,Z0, θ, φ, ψ are the functions denoted
by θi in (9). By (10), the Xl are determined as functions of the θi and ξi; by solving, one obtains the expressions (8)
and (9).2

This transformation does not, of course, separate the energy H into parts corresponding to translation, rotation and
relative motion of the nuclei. However one can separate H1 into three parts:

H1 = Hξξ + Hξθ + Hθθ; (11)

Hξξ is linear homogeneous in the ∂2

∂ξi∂ξ j
; Hξθ contains the ∂

∂ξi
; Hθθ is independent of all derivatives with respect to the

ξi. One can make further generalizations about these operators. If we apply the entire operator H1 to an arbitrary
function f (ξ) of the relative nuclear coordinates ξi, the resulting quantity H1 f (ξ) must be independent of the position
in space, hence of the θi. In particular, in Hξξ the coefficients of the ∂2

∂ξi∂ξ j
cannot depend on the θi. In contrast, these

do appear in Hξθ, associated with the ∂
∂ξi

, the ξi, θi and ∂
∂θi

; in Hθθ associated with ∂2

∂θi∂θ j
the ∂

∂θi
, ξi and θi.

We will consider these operators explicitly for
diatomic molecules.

The mechanical problem we must solve is

(H0 + κ4H1 −W)ψ = 0. (12)

We will show that any arbitrary solution which corresponds to a combination of nuclei and electrons forming a stable
molecule can be found by a development in a power series in κ.

Part II. Electronic Motion for Stationary Nuclei

If one sets κ = 0 in (12) one obtains a differential equation in the xk alone, the Xl appearing as parameters:{
H0

(
x,
∂

∂x
; X

)
−W

}
ψ = 0. (13)

2It is of physical significance that this solution is in general made using ambiguous functions; compare [6].
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This represents the electronic motion for stationary nuclei. We assume this eigenvalue problem is solved. The eigen-
values depend only on the functions ξi of the Xi; then one can use the coordinate system defined by the principal axes
of inertia, i.e. let Xl = X̄l(ξ). In this system of axes, the eigenfunctions depend, besides on xk, only on the ξi; however,
if one transforms back to the arbitrary space-fixed axes, the θi again become involved.

We designate the nth eigenvalue and the corresponding normalized eigenfunction as

W = Vn(ξ) ψ = φn(x; ξ, θ) (14)

so that the identity {
H0

(
x,
∂

∂x
; ξ, θ

)
− Vn(ξ)

}
φn(x; ξ, θ) = 0 (15)

is valid. Here we assume that Vn is a nondegenerate eigenvalue. As a matter of fact, this is never the case since
the indistinguishibility of the electrons introduces the resonance degeneracy, discovered by Heisenberg and Dirac;
for diatomic molecules there is an additional degeneracy of the angular momentum about the axis. But since we are
concerned here only with the systematics of the approximation procedure, we will not consider these degeneracies.
Their consideration would result in secular equations in the higher approximation.

The most important goal of our investigation is the proof that the function Vn(ξ) plays the role of a potential for the
nuclear motion. For this we must have several auxilliary formulas which will be derived now. It is necessary to show
that the matrix corresponding to the derivative of the operator H0(x, ∂

∂x ; ξ, θ) with respect to ξi, (for constant x, ∂
∂x ) can

be related to the derivative of the function Vn(ξ).
Instead of taking the derivative with respect to the ξi directly, we replace the ξi by ξi + κζi and differentiate with

respect to κ; the coefficient of a power of κ is then a homogeneous polynomial in ζi, these coefficients being derivatives
with respect to ξi. Thus we write

Vn(ξ + κζ) = V (0)
n + κV (1)

n + κ2V (2)
n + . . . , (16)

where
a) V (0)

n = Vn(ξ)

b) V (1)
n =

∑
i

ζi
∂Vn

∂ξi

c) V (2)
n =

1
2

∑
i j

ζiζ j
∂2Vn

∂ξi∂ξ j
,

. . . . . . . . . . . .

(17)

and correspondingly

H0 = H(0)
0 + κH(1)

0 + κ2H(2)
0 + . . .

φn = φ(0)
n + κφ(1)

n + κ2φ(2)
n + . . . (18)

. . . . . . . . . . . .

One can now develop the quantities φ(1)
n , φ(2)

n in the eigenfunctions φ(0)
n (x; ξ, θ), setting

a) φ(1)
n =

∑
n′

u(1)
nn′φ

(0)
n′ ,

b) φ(2)
n =

∑
n′

u(2)
nn′φ

(0)
n′ .

(19)
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Thus u(r)
nn′ is a homogeneous polynomial of the rth order in ζi, for instance

u(1)
nn′ =

∑
i

ζi

∫
φ(0)

n′
∂φ(0)

n

∂ξi
dx

u(2)
nn′ =

∑
i j

ζiζ j

∫
φ(0)

n′
∂2φ(0)

n

∂ξi∂ξ j
dx. (20)

These integrals, in which dx denotes the volume element in configuration space, are independent of the orientation of
the nuclear system in space, hence independent of the θi; one can thus evaluate them in the principal axis system.

If now, F denotes any operator on the xi, we define the rth order matrix element of F∫
φ(0)

n′ Fφ(r)
n dx = F(r)

nn′ . (21)

For r = 0 this becomes the usual matrix element

F(0)
nn′ = Fnn′ =

∫
φ(0)

n′ Fφ(0)
n dx. (22)

In general, by (19),
F(r)

nn′ =
∑
n′′

u(r)
nn′′Fn′′n′ . (23)

Using (15) for κ = 0
(H(0)

0 − V (0)
n )(r)

nn′ = u(r)
nn′ (V

(0)
n′ − V (0)

n ). (24)

Furthermore, we obtain by substituting (16) and (18) in (15), the following identities:

a) (H(0)
0 − V (0)

n )φ(1)
n + (H(1)

0 − V (1)
n )φ(0)

n = 0
b) (H(0)

0 − V (0)
n )φ(2)

n + (H(1)
0 − V (1)

n )φ(1)
n + (H(2)

0 − V (2)
n )φ(0)

n = 0
. . . . . . . . . . . .

(25)

Multiplying these by φ(0)
n′ and integrating over the xi, by virtue of (24) we find:

a) u(1)
nn′ (V

(0)
n′ − V (0)

n ) + (H(1)
0 )nn′ − V (1)

n δnn′ = 0
b) u(2)

nn′ (V
(0)
n′ − V (0)

n ) + (H(1)
0 − V (1)

n )nn′ + (H(2)
0 )nn′ − V (2)

n δnn′ = 0
. . . . . . . . . . . .

(26)

From these one can compute the (H(1)
0 )nn′ , (H(2)

0 )nn′ , . . . , ie the matrix elements
(
∂H0
∂ξi

)
nn′

,
(
∂2H0
∂ξi∂ξ j

)
nn′

, . . . . We will later

apply these formulas.3

Part III. Setting-up the Approximate Equations

An arbitrary configuration of electrons and nuclei cannot always be treated by a general approximation procedure.
We will here consider only states which correspond to a stable molecule. We will begin with the following question:

3The classical analogue to the simplest deduction from these formulae, namely the identity (H(1)
0 )nn = V (1)

n which follows from (26a) for n = n′,
is found in [7]; compare especially with § 4, formula (11).
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Is there a system of values of the relative nuclear coordinates ξi such that the eigenfunctions ψn of the energy oper-
ator (6), in so far as they depend on the ξi, have values significantly different from zero only in a small neighbourhood
of this set?

This wave-mechanical requirement corresponds obviously to the classical condition that the nuclei undergo only
small oscillations about the equilibrium configuration; the |ψn|

2 is the probability of finding a certain configuration of
given energy.

We consider, as the unperturbed system, the electronic motion for an arbitrary but henceforth fixed nuclear con-
figuration, ξi. We then develop all quantities with respect to small changes of the ξi, which we designate by κζi; we
presume then that the “domain” of oscillation is such that κ is close to zero, an assumption which is only justified by
its success.

We have then as in (18), part II, the development

H0(x,
∂

∂x
; ξ + κζ, θ) = H(0)

0 + κH(1)
0 + κ2H(2)

0 + . . . , (27)

where

a) H(0)
0 = H0(x, ∂

∂x ; ξ),

b) H(1)
0 =

∑
i ζi

∂H0
∂ξi
,

c) H(2)
0 = 1

2
∑

i j ζiζ j
∂2H0
∂ξi∂ξ j

,

. . . . . . . . . . . .

(28)

and from (11) since ∂
∂ξ

= 1
κ
∂
∂ζ

κ4H1(X,
∂

∂X
) = κ4

(
1
κ2 Hζζ +

1
κ

Hζθ + Hθθ

)
(29)

= κ2H(0)
ζζ + κ3

(
H(0)
ζθ + H(1)

ζζ

)
+ κ4

(
H(0)
θθ + H(1)

ζθ + H(2)
ζζ

)
+ . . .

where

a) H(0)
ζζ = H(0)

ζζ (ξ, ∂2

∂ζi∂ζ j
)

b) H(1)
ζζ =

∑
i ζi

∂H(0)
ζζ

∂ξi

. . . . . . . . . . . .

(30)

a) H(0)
ζθ = H(0)

ζθ (ξ, θ, ∂
∂ζ
, ∂
∂θ

)

b) H(1)
ζθ =

∑
i ζi

∂H(0)
ζθ

∂ξi

. . . . . . . . . . . .

(31)

a) H(0)
θθ = H(0)

θθ (ξ, θ, ∂2

∂θi∂θ j
)

b) H(1)
θθ =

∑
i ζi

∂H(0)
θθ

∂ξi

. . . . . . . . . . . .

(32)
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The arguments ξi are hereafter to be considered constants.
The total energy operator is then

H = H0 + κH(1)
0 + κ2

(
H(2)

0 + H(0)
ζζ

)
+ κ3

(
H(3)

0 + H(0)
ζθ + H(1)

ζζ

)
+ κ4

(
H(4)

0 + H(0)
θθ + H(1)

ζθ + H(2)
ζζ

)
+ . . . (33)

The succeeding terms all have the same form and can be formed from the term in κ4 by increasing the superscript by
1.

We also develop the desired eigenfunction and energy parameter with respect to κ :

ψ = ψ(0) + κψ(1) + κ2ψ(2) + . . .

W = W (0) + κW (1) + κ2W (2) + . . . (34)

We then obtain the following approximation equations:

a) (H(0)
0 −W (0))ψ(0) = 0

b) (H(0)
0 −W (0))ψ(1) = (W (1) − H(1)

0 )ψ(0)

c) (H(0)
0 −W (0))ψ(2) = (W (2) − H(2)

0 − H(0)
ζζ )ψ(0) + (W (1) − H(1)

0 )ψ(1)

d) (H(0)
0 −W (0))ψ(3) = (W (3) − H(3)

0 − H(0)
ζθ − H(1)

ζζ )ψ(0)

+(W (2) − H(2)
0 − H(0)

ζζ )ψ(1) + (W (1) − H(1)
0 )ψ(2)

e) (H(0)
0 −W (0))ψ(4) = (W (4) − H(4)

0 − H(0)
θθ − H(1)

ζθ − H(2)
ζζ )ψ(0)

+(W (3) − H(3)
0 − H(0)

ζθ − H(1)
ζζ )ψ(1)

+(W (2) − H(2)
0 − H(0)

ζζ )ψ(2) + (W (1) − H(1)
0 )ψ(3)

. . . . . . . . . . . .

(35)

Part IV. Solution of the Approximate Equations of zeroth and first Order: Equilibrium of the Nuclei

The zeroth order equation (35a) describes the electronic motion for stationary nuclei as discussed in Part II. From
the normalized eigensolution φ(0)

n (x; ξ, θ) belonging to the eigenvalue V (0)
n = Vn(ξ), we find the general solution in the

form:
ψ(0)

n = χ(0)
n (ζ, θ)φ(0)

n (x; ξ, θ) (36)

where χ(0)
n is an, as yet, arbitrary function of the arguments ζi, θ j; this must be included in order to enable solutions of

the following approximation equations.
The following approximation equation (35b)

(H(0)
0 −W (0))ψ(1) = (W (1) − H(1)

0 )ψ(0) (37)

is soluble only when the right-hand side is orthogonal to ψ(0)
n (relative to the electronic coordinates xi).4

This gives the condition {(
H(1)

0

)
nn
−W (1)

}
χ(0)

n (ζ, θ) = 0 (38)

4We define the orthogonality of two functions f (x) and g(x) by
∫

f (x)g(x)dx = 0.
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where
(
H(1)

0

)
nn

is the diagonal matrix element of the operator H(1)
0 relative to the xi, thus by (28b) a homogeneous

linear function of ζi. This must however, by (38), be constant, since χ(0)
n (ζ, θ) cannot vanish identically without the

same being true for ψ(0)
n .

Thus it follows that
W (1) = 0,

(
H(1)

0

)
nn

= 0. (39)

From (26a) and (17) we have however (
H(1)

0

)
nn

= V (1)
n =

∑
i

ζi
∂Vn

∂ξi
.

Thus:
∂Vn

∂ξi
= 0. (40)

The validity of continuing our approximation procedure requires that the relative nuclear coordinates ξi must not
be arbitrarily chosen, but must correspond to an extremum of the electronic energy Vn(ξ). The existence of this is
therefore the condition for the existence of the molecule, a law which is usually assumed to be self-evident. We will
show later that it must necessarily be a minimum as well.

The function χ(0)
n (ζ, θ) remains, as yet, undetermined. Setting in (37) W (0)

n = Vn(ξ), W (1)
n = 0 and ψ(0)

n = χ(0)
n φ(0)

n

we find the equation which determines φ(1)
n (

H(0)
0 − V (0)

n

)
ψ(1)

n = −H(1)
0 φ(0)

n χ(0)
n . (41)

A solution of this by (25a) is ψ(1)
n = χ(0)

n φ(1)
n where φ(1)

n is the function (19a) defined by (18). The general solution is
obtained by adding a solution φ(0)

n of the homogeneous equation with the yet undetermined factor χ(1)
n (ξ, θ):

ψ(1)
n = χ(0)

n φ(1)
n + χ(1)

n φ(0)
n . (42)

Part V. Solution of the Approximate Equations of second and third Order:Nuclear Vibration

We now reach the approximation equation (35c), which after substitution of the solutions for the lower order
approximations is (

H(0)
0 − V (0)

n

)
ψ(2)

n =
(
W (2)

n − H(2)
0 − H(0)

ζζ

)
χ(0)

n φ(0)
n

− H(1)
0

(
χ(0)

n φ(1)
n + χ(1)

n φ(0)
n

)
. (43)

In order for this to be solvable, the right-hand side must again be orthogonal to φ(0)
n ; using the notation of part II this

yields, because of (39): {(
H(2)

0 + H(0)
ζζ

)
nn

+
(
H(1)

0

)
nn
−W (2)

n

}
χ(0)

n = 0.

It follows from (26b) with V (1)
n = 0 that (

H(2)
0

)
nn

+
(
H(1)

0

)(1)

nn
= V (2)

n . (44)

Since H(0)
ζζ by (30a) is seen to be independent of the xk we find:{

H(0)
ξξ + V (2)

n −W (2)
n

}
χ(0)

n = 0. (45)

Noting the meanings of H(0)
ζζ and V (2)

n given by (17c) and (30a) we see that (45) represents the equation for harmonic
nuclear vibration: H(0)

ζζ

(
ξ,

∂2

∂ζi∂ζ j

)
+

1
2

∑
i j

ζiζ j
∂2Vn

∂ξi∂ξ j
−W (2)

n

 χ(0)
n = 0. (46)
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This equation shows that the function Vn(ξ) plays the role of a potential energy for the nuclei, up to terms of 2nd order.
For the existence of a stable molecule there is a further condition that the extremum of Vn(ξ) determined by (40) must
be a minimum; then the quadratic form V (2)

n must be positive definite, thereby all degrees of freedom ζi stable and
oscillating about the equilibrium configuration are possible. It is known that the equation for the vibration (46) is
separable through a linear transformation of the ζi to normal coordinates ηi. If σ(0)

ns (ζ) be the normalized eigensolution
of (46) belonging to the eigenvalue W (2)

ns , the general solution is

a) W (2) = W (2)
ns , χ(0)

n = χ(0)
ns , where

b) χ(0)
ns = ρ(0)

ns (θ)σ(0)
ns (ζ).

(47)

The index s thus represents the set of vibrational quantum numbers. ρ(0)
ns is an, as yet, undetermined function of the θi,

the introduction of which is necessary for the continuation of the procedure.
It is known that σ(0)

ns (ζ) is a linear combination of products of orthogonal Hermite functions for the individual
normal coordinates ηi; these functions have the property that they approach zero very rapidly (exponentially) outside
the limit of classical vibration. So our substitution of (ξ+κζ) is justified since it indeed leads to a solution, with regard
to the ξ-oscillation within the limit, which vanish with κ. We apply the further property of the orthogonal Hermite
functions that they are either even or odd functions of their argument.

Let Φ be any operator on the ζi. We can then construct the corresponding matrix

Φnn′
ss′

=

∫
σ(0)

n′ s′Φσ
(0)
ns dζ (48)

where dζ is the volume element in the space of the ζi.
In order to solve equation (43) we substitute on the right-hand side, using (45),(

W (2)
ns − H(0)

ζζ

)
χ(0)

ns = V (2)
n χ(0)

ns ;

(43) then becomes: (
H(0)

0 − V (0)
n

)
ψ(2)

n =
(
V (2)

n − H(2)
0

)
χ(0)

ns φ
(0)
n − H(1)

0

(
χ(0)

ns φ
(1)
n + χ(1)

ns φ
(0)
n

)
. (49)

The general solution is
ψ(2)

n = χ(0)
ns φ

(2)
n + χ(1)

ns φ
(1)
n + χ(2)

ns φ
(0)
n , (50)

where χ(2)
ns denotes a new, undetermined function of the ζi, θ j; this is easily verified using the identities (25).

We now consider the approximation equation of 3rd order (35d); after substitution of the already determined
quantities, this becomes: (

H(0)
0 − V (0)

n

)
ψ(3)

n =
(
W (3) − H(3)

0 − H(0)
ζθ − H(1)

ζζ

)
χ(0)

ns φ
(0)
n

+
(
W (2)

ns − H(2)
0 − H(0)

ζζ

) (
χ(0)

ns φ
(1)
n + χ(1)

ns φ
(0)
n

)
− H(1)

0

(
χ(0)

ns φ
(2)
n + χ(1)

ns φ
(1)
n + χ(2)

ns φ
(0)
n

)
. (51)

We may consider the right-hand side as a development in the φ(0)
n ; we write(

H(0)
0 − V (0)

n

)
ψ(3)

n = W (3)χ(0)
ns φ

(0)
n −

∑
n′

F(3)
nn′φ

(0)
n′ , (52)

where
F(3)

nn′ = F(3,1)
nn′ χ

(2)
ns + F(3,2)

nn′ χ
(1)
ns + F(3,3)

nn′ χ
(0)
ns ; (53)
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where the F are operators on ζand θ, and

a) F(3,1)
nn′ =

(
H(1)

0

)
nn′

b) F(3,2)
nn′ =

(
H(0)
ζζ − H(2)

0 −W (2)
ns

)
nn′

+
(
H(1)

0

)(1)

nn′
,

(54)

we can say about F(3,3)
nn′ only that it is a homogeneous function of 3rd degree in the ξi and the ∂/∂ζi.

If (52) is solvable, we must have
W (3)χ(0)

ns − F(3)
nn = 0

because of (53) and (54a)
F(3,2)

nn χ(1)
ns =

(
W (3) − F(3,3)

nn

)
χ(0)

ns , (55)

where, by (54b) and (44)
F(3,2)

nn = H(0)
ζζ − V (2)

n −W (2)
ns .

Thus (55) is the inhomogeneous equation corresponding to the vibration equation (45); since (45) has the normalized

solution σ(0)
ns belonging to the eigenvalue W (2)

ns , (55) is solvable only when the right-hand side multiplied by σ(0)
ns has a

vanishing integral over ζ-space. This gives, using (47b), a differential equation for ρ(0)
ns (θ):(

F(3,3)
nn
ss
−W (3)

)
ρ(0)

ns = 0.

However, F(3,3)
nn is odd in the ξi and ∂/∂ζi so the diagonal element of the ζ-matrix must vanish. When one transforms

to the normal coordinates ηi, σ
(0)
ns becomes a sum of products of orthogonal Hermite functions, F(3,3)

nn , a polynomial of
odd order in the ηi and ∂/∂ηi, so that every term contains at least one of ηi or ∂/∂ηi in an odd power; therefore every
term in the ζ-matrix vanishes. It follows therefore

W (3) = 0 (56)

and ρ(0)
ns remains, as before, undetermined.

Now we may solve:
χ(1)

ns = S (1)
ns ρ

(0)
ns (57)

where S (1)
ns is the following operator with respect to the θi:

S (1)
ns =

∑′

s′

F(3,3)
nn
ss′

σ(0)
ns′

W (2)
ns −W (2)

ns′
. (58)

Finally the solution of (52):

ψ(3)
n =

∑′

n′

F(3)
nn′φ

(0)
n′

V (0)
n − V (0)

n′
(59)

and by (53), this has the form:

ψ(3)
n =

∑′

n′

(
G(3,1)

nn′ χ
(2)
ns φ

(0)
n′ + G(3,2)

nn′ χ
(1)
ns φ

(0)
n′ + G(3,3)

nn′ χ
(0)
ns φ

(0)
n′

)
, (60)

where

G(3,2)
nn′ =

F(3,2)
nn′

V (0)
n − V (0)

n′
. (61)
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Noting (54) we see that G(3,1)
nn′ is a number, G(3,2)

nn′ a differential operator with respect to the ζi and G(3,3)
nn′ an operator

with respect to the ζi and θi.
By (26a), Part II

∑′

n′
G(3,1)

nn′ χ
(2)
ns φ

(0)
n′ =

∑ (
H(1)

0

)
nn′
φ(0)

n′ χ
(2)
ns

V (0)
n − V (0)

n′

=
∑′

n′
u(1)

nn′φ
(0)
n′ χ

(2)
ns

= φ(1)
n χ(2)

ns

thus
ψ(3)

n = φ(1)
n χ(2)

ns +
∑′

n′

(
G(3,2)

nn′ χ
(1)
ns φ

(0)
n′ + G(3,3)

nn′ χ
(0)
ns φ

(0)
n′

)
. (62)

Part VI. Solution of the Approximate Equations of fourth and higher Order: Rotation and Coupling Effects

After substitution of the quantities already determined, the 4th order approximation equation (35e) becomes:(
H(0)

0 − V (0)
n

)
ψ(4)

n =
(
W (4) − H(4)

0 − H(0)
θθ − H(1)

ζθ − H(2)
ζζ

)
χ(0)

ns φ
(0)
n (63)

−
(
H(3)

0 + H(0)
ζθ + H(1)

ζζ

) (
χ(1)

ns φ
(0)
n + χ(0)

ns φ
(1)
n

)
+

(
W (2)

ns − H(2)
0 − H(0)

ζζ

) (
χ(2)

ns φ
(0)
n + χ(1)

ns φ
(1)
n + χ(0)

ns φ
(2)
n

)
− H(1)

0

φ(1)
n χ(2)

ns +
∑′

n′

(
G(3,2)

nn′ χ
(1)
ns φ

(0)
n′ + G(3,3)

nn′ χ
(0)
ns φ

(0)
n′

) .
We develop again the right-hand side in the φ(0)

n :(
H(0)

0 − V (0)
n

)
ψ(4)

n = W (4)χ(0)
ns φ

(0)
n −

∑
n′

F(4)
nn′φ

(0)
n′ , (64)

where
F(4)

nn′ = F(4,2)
nn′ χ

(2)
ns + F(4,3)

nn′ χ
(1)
ns + F(4,4)

nn′ χ
(0)
ns ; (65)

here we have
F(4,2)

nn′ =
(
H(0)
ζζ − H(2)

0 −W (2)
ns

)
nn′

+
(
H(1)

0

)(1)

nn′
(66)

and is identical with F(3,2)
nn′ (54b). While F(4,3)

nn′ is of odd order in the ζi, ∂/∂ζi, F(4,3)
nn′ is of even order. The integrability

of (64) requires:
W (4)χ(0)

ns − F(4)
nn = 0;

this means that by (65)
F(4,2)

nn χ(2)
ns =

(
W (4) − F(4,4)

nn

)
χ(0)

ns − F(4,3)
nn χ(1)

ns . (67)

The left side agrees again with the vibration equation (45) because of (66). The right-hand side must also be
orthogonal to σ(0)

ns . Substituting the expressions for χ(0)
ns and χ(1)

ns from (47b) and (57), and using the symbol

(Φ)(1)
ss′ =

∫
σ(0)

ns ΦS (1)
ns dζ =

∑′

s′′

[
ΦF(3,3)

nn
ss′′

]
ss′

W (2)
ns −W (2)

ns′′
, (68)
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we find {
F(4,4)

nn
ss

+
(
F(4,3)

nn

)(1)

ss
−W (4)

}
ρ(0)

ns = 0. (69)

This equation determines finally the function ρ(0)
ns (θ), hence the motion of the principal axes of inertia: the translations

and rotations. The principal term of the operator in (69) is the one which contains the second derivative with respect
to the θi; a glance at (63) shows that it arises from H(0)

θθ χ
(0)
ns φ

(0)
n , the term corresponds in F(4,4)

nn to(
H(0)
θθ

)
n

=

∫
φ(0)

n H(0)
θθ (φ(0)

n . . . )dx, (70)

where in the place of the dots we have to put in the function which is operated upon. Since the operator (70) is
independent of the ζi, the diagonal elements of the corresponding s-matrix are identical with it. Physically the fact

that the complicated operators
(
H(0)
θθ

)
n

appear instead of the simple operators H(0)
θθ indicates a coupling between the

top motion of the nuclei and the electronic motion.
These are, as we will later see for the case of the diatomic molecule, the same effects that Kramers and Pauli [2]

have tried to demonstrate using the assumption of a ‘fly-wheel’ built in to the top. Thus there are terms in (69) that
contribute to the operator Hζθ; these correspond to a coupling of the top motion with angular momenta which are a
consequence of nuclear vibration. Finally, there are terms which do not concern the θI ; these are the additions to the
vibrational energy of order κ4.

Since the translations can always be separated in a trivial fashion, we consider only the rotations. If r be the
rotational quantum number, we have for the solution of (70)

W (4) = W (4)
nsr; ρ(0)

ns = ρ(0)
nsr(θ). (71)

Then one can solve (67) and finally also (64). It is of no use to write out the formulae explicitly.
Clearly, the procedure may be continued; however nothing new of significance will appear. The higher approx-

imations describe couplings among rotations, vibrations and electronic motions. Quantum numbers other than the
ones already introduced do not enter.

We summarize now the consequences of our solutions. The most obvious result is that in order to determine
completely the eigenfunctions to 0th order it is necessary to solve the approximation differential equations to 4th
order; we have

ψnsr(x, ζ, θ) = φ(0)
n (x, ξ, θ)σ(0)

ns (ζ)ρ(0)
nsr(θ) + . . . (72)

where φ(0)
n is the eigenfunction for electronic motion for stationary nuclei, σ(0)

ns that for nuclear vibration, and ρ(0)
nsr that

for rotation. Thus are defined the vibrational coordinates ζi from an equilibrium configuration ξi which is defined by
the requirement that in this configuration the electronic energy Vn(ξ) is a minimum. The determination of the three
functions φ(0)

n , σ(0)
ns and ρ(0)

nsr yield the energy to 4th order:

Wnsr = V (0)
n + κ2W (2)

ns + κ4W (4)
nsr + . . . ; (73)

where V (0)
n is the minimum value of the electronic energy which characterizes the molecule at rest, W (2)

ns is the energy
of nuclear vibration, and W (4)

nsr contains (along with additional terms for the vibrational energy) the rotational energy.
In this approximation (to κ4) the three basic types of motion are ‘separated’; the coupling among them involves terms
of higher powers of κ.

Given (72) we can now calculate transition probabilities (intensities of bands).
The electrical moment of a moleculeM consists of a nuclear part P and an electronic part p; the x-component is:

Mx = Px + px, where

 Px =
∑

l elXl

px = e
∑

k xk
. (74)
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Hence from the set of matrix elements with respect to xk, ζi and θ j;

(px) n
n′

=

∫
pxφ

(0)
n φ(0)

n dx (75)

is a function of the ζi and θ j, then the

(px) ns
n′ s′

=

∫
(px) n

n′
σ(0)

ns′σ
(0)
ns′dζ

(Px) ns
n′ s′

=

∫
(Px)σ(0)

ns σ
(0)
n′ s′dζ (76)

are functions of the θ j, finally

(px) nsr
n′ s′r′

=

∫
(px) ns

n′ s′
ρ(0)

nsrρ
(0)
n′ s′r′dθ

(Px) nsr
n′ s′r′

=

∫
(Px) ns

n′ s′
ρ(0)

nsrρ
(0)
n′ s′r′dθ (77)

are numerical constants which determine the radiation and the transition probability for nsr → n′s′r′. We can interpret
this step by step procedure as follows: for every electronic transition n → n′, there corresponds a virtual oscillator
with moment (px) n

n′
; from this one obtains the matrix (px) ns

n′ s′
which corresponds to a system of vibrational bands

(transitions from s → s′), by a rule (somewhat different from the ordinary one) in which one uses one eigenfunction
of the lower and one of the upper electronic level (equation (76)). We repeat the procedure for the line of the band
corresponding to the transition r → r′. The method of evaluation of the intensity of vibrational bands contained here
is first given by Franck [3] and further developed by Condon [4].

These are determined by variation of the functions Vn(ξ) and Vn′ (ξ); only in the neighbourhood of their minima
are the corresponding eigenfunctions σ(0)

ns and σ(0)
n′ s′ significantly different from zero; their product is so only when

these regions overlap. When the function Vn(ξ) changes only slightly in an electronic transition n → n′, the bands
corresponding to a small change of s will be intense; however if Vn(ξ) changes greatly in the transition, an overlap of
the intervals in which σ(0)

ns and σ(0)
n′ s′ do not vanish becomes possible only when the difference s − s′ is large. These

relations are quantitatively discussed by Condon. Similar considerations apply for the rotations mutatis mutandis.

Part VII. Special Case of the Diatomic Molecule

As an example we will briefly treat the diatomic molecule. Besides the resonance degeneracy, which is a con-
sequence of the indistinguishibility of the electrons, there is an additional degeneracy since corresponding to every
energy value there are two possible modes of motion in which the angular momentum about the internuclear axis
is oppositely directed. Since we are not concerned here with the fine structure of bands, we will not consider this
degeneracy; we limit our consideration to cases in which the angular momentum about the axis vanishes or when the
electronic energy is independent or only slightly dependent on the angular momentum component.

For two nuclei we have only one ξ coordinate, the nuclear separation, and five θ coordinates: the coordinates of
the center of mass X0,Y0,Z0, and the polar coordinates of the internuclear axis θ, ω.

The kinetic energy of the nuclei becomes

TK = −κ4 h2

8π2m

{
∆0 +

µ

ξ2

∂

∂ξ

(
ξ2 ∂

∂ξ

)
+
µ

ξ2 ∆θ

}
(78)

where

κ =

(
m

M1 + M2

)1/4

and µ =
(M1 + M2)2

M1M2
(79)
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and

∆0 =
∂2

∂X0
2 +

∂2

∂Y0
2 +

∂2

∂Z0
2 ,

∆θ =
1

sin2 θ

∂2

∂ω2 +
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
. (80)

Thus:

Hξξ = −
h2

8π2m
µ
∂2

∂ξ2 ,

Hξθ = −
h2

8π2m
2µ
ξ

∂

∂ξ
, (81)

Hθθ = −
h2

8π2m

(
∆0 +

µ

ξ2 ∆θ

)
.

Substituting ξ + κζ for ξ and developing in κ, we find:

H(0)
ζζ = −

h2

8π2m
µ
∂2

∂ζ2 ,

H(p)
ζζ = 0, p = 1, 2, . . . (82)

H(0)
ζθ = −

h2

8π2m
2µ
ξ

∂

∂ζ
,

H(1)
ζθ =

h2

8π2m
µ

ξ2 ζ
∂

∂ζ
, (83)

. . . . . . . . . . . . . . .

H(0)
θθ = −

h2

8π2m

(
∆0 +

µ

ξ2 ∆θ

)
,

H(1)
θθ =

h2

8π2m
2µ
ξ3 ζ∆θ. (84)

. . . . . . . . . . . . . . .

The nuclear separation is determined by the equation

V ′n =
∂Vn

∂ξ
= 0. (85)

The equation for nuclear vibration is {
−

h2

8π2m
µ
∂2

∂ζ2 +
1
2
ζ2V ′′n (ξ)W (2)

n

}
χ(0)

n = 0. (86)

If we set

a =
8π2m
h2µ

W (2)
n b =

8π2m
h2µ

V ′′n η = ζb1/4 (87)

we have [8] {
∂2

∂η2 +

(
a
√

b
− η2

)}
χ(0)

n = 0.
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The eigenvalues are
a/b1/2 = 2s + 1 (s = 0, 1, 2, . . . ),

with eigenfunctions
σ(0)

ns = exp−(η2/2)Hs(η),

where Hs is the sth Hermite polynomial.
The energy of the vibrations is thus:

κ2W (2)
ns = a

h2

8π2

κ2µ

m
= (2s + 1)b1/2 h2

8π2

κ2µ

m

=

(
s +

1
2

)
h

4π

√
κ4 µ

m
V ′′n

or

κ2W (2)
ns =

(
s +

1
2

)
hν0 (88)

with
1

4π

√
κ4 µ

m
V ′′n =

1
4π

√(
1

M1
+

1
M2

)
V ′′n = ν0 (89)

the frequency of the oscillator.
We set up now the equation (69) for the rotation, neglecting any detailed estimation of the correction to the

vibrational energy. Since Hζθ by (81) does not contain derivatives with respect to the θ j, we need consider only the

term
(
H(0)
θθ

)
n

in (69); all remaining terms we include in the constant Cns. The rotational equation (69) is then:{(
H(0)
θθ

)
n

+ Cns −W (4)
}
ρ(0)

ns = 0. (90)

Since we have dropped the translational part from Hθθ(0) , we have by (70) and (84) for an arbitrary function f (θ):(
H(0)
θθ

)
n

f (θ) = −
h2µ

8π2mξ2

∫
φ(0)

n ∆θ(φ(0)
n f )dx

and by (80)

∆θ(φ(0)
n f ) = φ(0)

n ∆θ f + f ∆θφ
(0)
n + 2

 1
sin2 θ

∂φ(0)
n

∂ω

∂ f
∂ω

+
∂φ(0)

n

∂θ

∂ f
∂θ

 .
Thus (

H(0)
θθ

)
n

f = −
h2µ

8π2mξ2

{
∆θ f + f

∫
φ(0)

n ∆θφ
(0)
n dx

+ .
2

sin2 θ

∂ f
∂ω

∫
φ(0)

n
∂φ(0)

n

∂ω
dx + 2

∂ f
∂θ

∫
φ(0)

n
∂φ(0)

n

∂θ
dx

}
.

If we write ∆θ in the form:

∆θ =
∂2

∂θ2 + ctg θ
∂

∂θ
+

1
sin2 θ

∂2

∂ω2

we see that it is convenient to introduce the following notation:

Θn =

∫
φ(0)

n
∂φ(0)

n

∂θ
dx, Ωn =

∫
φ(0)

n
∂φ(0)

n

∂ω
dx,

Θ
(2)
n =

∫
φ(0)

n
∂2φ(0)

n

∂θ2 dx, Ω
(2)
n =

∫
φ(0)

n
∂2φ(0)

n

∂ω2 dx.
(91)
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These quantities are the diagonal matrix elements of pθ, pω, p2
θ and p2

ω (aside from a factor h
2π2 , − h2

4π2 respectively);
the first two denote the average value of the electronic angular momentum about their corresponding Eulerian angle;
the second two, the average of the square of the angular momentum of electronic motion. We write then for (90)
explicitly:{(

∂2

∂θ2 + 2Θn
∂

∂θ
+ Θ

(2)
n

)
+ ctg θ

(
∂

∂θ
+ Θn

)
1

sin2 θ

(
∂2

∂ω2 + 2Ωn
∂

∂ω
+ Ω

(2)
n

)
+

8π2mξ2

h2µ

(
W (4) −Cns

)}
ρ(0)

ns = 0 (92)

This is very similar to the equation of Kramers and Pauli for a rotor with a built-in fly-wheel; the difference is
essentially that they use the squares of the average values Θn

2
and Ωn

2
, instead of the average of the squares Θ2

n and
Ω2

n.
The dependence of the quantities in (91) on the angles θ and ω may be established by elementary considerations

if it is assumed that for this purpose the diagonal elements of the quantum mechanical matrix may be replaced by the
corresponding classical averages. One may decompose the motion of the electronic angular momentum vector into
an irregular variation without average rotations and a superimposed uniform rotation about the molecular axis. We
represent the variation in the average by a constant vector; this rotates uniformly about the axis. This exhibits the same
behaviour as a symmetric top with angular momentum components with respect to the top-fixed coordinate system
having values L, M and N. From this we may express the components of the angular momentum in the θ, ω direction
as follows:

Θ = L cos γ − M sin γ

Ω = L sin θ sin γ + M sin θ cos γ + N cos θ,

where γ is the angle of the eigenrotation about the axis. Averaging over γ, we find:5

Θ = 0 Ω = N cos θ
Θ2 = 1

2 (L2 + M2) Ω2 = 1
2 (L2 + M2) sin2 θ + N2 cos2 θ.

We identify N with the quantum number ρ which gives the angular momentum about the axis, and 1
2 (L2 + M2) and

1
2 N2 with the averages p2

⊥ and p2
‖

of the total electronic angular momentum perpendicular and parallel to the axis;

since N is constant, p2
‖

= p2. We have finally:

Θn = 0 Ωµ = p cos θ

Θ2
n = p2

⊥ Ω2 = p2
⊥ sin2 θ + p2 cos2 θ.

(93)

This result requires naturally a rigorous quantum mechanical verification; presumably p2 is replaced by p(p + 1).
In the eigenvalue problem (92), the quantity 8π2mξ2

h2µ
W (4) is equal to a numerical function of the rotational quantum

number r, say gns(r); the rotational energy is thus:

κ4W (4)
nsr =

h2µκ4

8π2mξ2 gns(r) =
h2

8π2J
gns(r), (94)

where
J =

m
µκ4 ξ

2 =
M1M2

M1 + M2
ξ2, (95)

5Compare, for instance [9]
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the moment of inertia of the nuclei at equilibrium.
A discussion of the higher approximation is meaningless unless we consider the degeneracies; we will not attempt

this here.
We will now show briefly that one can treat the diatomic by a completely different perturbation procedure; the

classical analogue of this treatment was carried out by Born and Hückel [5]. The motion of the electronic system is
considered to be unperturbed not for stationary nuclei but rather for uniform rotation of the nuclei.

Part VIII. Independent Treatment of the Diatomic Molecule.

We go back to equation (12), and rewrite, substituting (11):{
H0 + κ4

(
Hξξ + Hξθ + Hθθ

)
−W

}
ψ = 0.

Diatomic molecules have the peculiarity that Hξθ is generally independent of the θ. In this case, the method enables
separation from the translations and rotations. From (81), dropping the translational terms:H0 −

h2µ

8π2m
κ4

 ∂2

∂ξ22 +
2
ξ

∂

∂ξ
+

1
ξ2 ∆θ

 −W
ψ = 0. (96)

We set
ψ = Yr(θ, ω)Ψr(x; ξ), (97)

where Yr is a spherical function of rth order which satisfies the equation:

∆θYr + r(r + 1)Yr = 0;

thus we find for Ψr the conditionH0 −
h2µ

8π2m
κ4

 ∂2

∂ξ22 +
2
ξ

∂

∂ξ
−

r(r + 1)
ξ2

 −W
 Ψr = 0. (98)

We again substitute ξ + κζ for ξ; thus considering vibrations about the state of uniform rotation. Denoting the energy
of this state as:

R =
h2µκ2

8π2m
r(r + 1)
ξ2 =

h2

8π2J
r(r + 1) (99)

and setting
W = E + R, (100)

we find for (98) (
H(0) + κH(1) + κ2H(2) + · · · − E

)
Ψr = 0 (101)

where

H(0) = H(0)
0

H(1) = H(1)
0 + ζR′

H(2) = H(2)
0 +

1
2
ζ2R′′ −

h2µ

8π2m
∂2

∂ζ2 (102)

H(3) = H(3)
0 +

1
6
ζ3R′′′ −

h2µ

8π2m
2
ζ

∂

∂ζ
. . . ;
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H(0)
0 , H(1)

0 , . . . are the operators given earlier. All the formulas of Part II are valid without modification. The approxi-
mation equations are:

a)
(
H(0) − E(0)

)
Ψ

(0)
r = 0

b)
(
H(0) − E(0)

)
Ψ

(1)
r =

(
E(1) − H(1)

)
Ψ

(0)
r

c)
(
H(0) − E(0)

)
Ψ

(2)
r =

(
E(2) − H(2)

)
Ψ

(0)
r +

(
E(1) − H(1)

)
Ψ

(1)
r

. . .

(103)

The first has the solution:
E(0) = Vn(ξ), Ψ(0)

r = Ψ(0)
rn = σ(0)

rn (ζ)φ(0)
n (x; ξ), (104)

where Vn(ξ) and φ(0)
n (x; ξ) are the previously introduced functions and σ(0)

rn (ζ) is, to begin with, arbitrary. The condition
for integrability of (103b) is (

E(1) − H(1)
)
σ(0)

rn (ζ) = 0.

Now, by (26a) (Part II):

H(1)
nn =

(
H(1)

0

)
nn

+ ζR′ = V (1)
n + ζR′ = ζ

∂

∂ξ
(Vn + R).

Hence, as before (Part IV),

E(1) = 0,
∂

∂ξ
(Vn + R) = 0. (105)

This condition obviously states that for the unperturbed rotation, equilibrium must prevail between the centrifugal
force and the quasi-electric force, which, as a consequence of the electronic motion, resists a displacement of the
nuclei. The centrifugal force is:

−

(
1

M1
+

1
M2

)
p2

r

ξ3 = −

(
1

M1
+

1
M2

)
h2

4π2

r(r + 1)
ξ3 ,

where the quantum mechanical value h
2π

√
r(r + 1) for the angular momentum is substituted for pr; by (99) and (95),

this agrees with R′.
From relation (105), how to calculate the equilibrium separation ξr; depends on the rotational quantum number r.

For small values of the rotational energy R, one can develop ξr in powers of β, where:

β = κ4 µ

m
h2

4π2 r(r + 1) =

(
1

M1
+

1
M2

)
h2

4π2 r(r + 1); (106)

we find:6

ξr = ξ +
1

ξ3V ′′n
β −

3
ξ7V ′′n

2

(
1 +

ξ

6
V ′′′n

V ′′n

)
β2 + . . . (107)

Since β is of order κ4, we will use by systematic procedure only as many terms of this set as correspond to the
order of the approximation in the perturbation method.

Since we consider this again, we will shortly see that this is the same method as before, only simplified by the
previous consideration of the rotation. The solution of (103b) is:

Ψ(1)
rn = σ(0)

rn φ
(1)
n + σ(1)

rn φ
(0)
n (108)

this corresponds to (42); and the condition for integrability of (102c):{
H(2)

nn +
(
H(1)

nn

)(1)

nn
− E(2)

n

}
σ(0)

rn = 0.

6One can easily deduce this formula from the cited work of Born and Hückel.
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This is, however, the vibration equation{
−

h2µ

8π2m
∂2

∂ζ2 +
1
2
ζ2(V ′′n + R′′) − E(2)

n

}
σrn = 0. (109)

Thus, as in Part VII:

κ2E(2)
rns =

(
s +

1
2

)
hνr, (110)

where the frequency,

νr =
1

4π

√(
1

M1
+

1
M2

)
(V ′′n + R′′) (111)

still depends on the rotational quantum number r, from the R.
Further, as in Part VII,

σ(0)
rns = exp(−η2/2)Hs(η) (112)

with

η = ζb1/4, b =
8π2

h2

m
2µ

(V ′′n + R′′).

The procedure may be continued in the usual fashion. We find E(3) = 0, while E(4), besides the deviation from
the harmonic vibration law, contains a coupling with the electronic motion. A thorough consideration of the formulae
would, however, be beyond the scope of this work, which demonstrates only the principle of the development; also
the calculation of the higher approximations is meaningful only when the degeneracies are taken into account.
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