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ON QUANTUM MECHANICS Il

M. BORN, W. HEISENBERG AND P. JORDAN

Gattingen

Abstract: The quantum mechanics developed in Part I of this paper from
Heisenberg’s approach is here extended to systems having arbitrarily many
degrees of freedom. Perturbation theory is carried through for nondegenerate
and for a large class of degenerate systems, and its connection with the eigenvalue
theory of Hermitian forms is demonstrated. The results so obtained are employed

in the derivation of momentum and angular momentum conservation laws, and
of selection rules and intensity formulae. Finally, the theory is applied to the
statistics of eigenvibrations of a black body cavity.

Introduction

The present paper sets out to develop further a general quantum-
theoretical mechanics whose physical and mathematical basis has been
treated in two previous papers by the present authors.l It was found
possible to extend the above theory to systems having several degrees
of freedom 2 (Chapter 2), and by the introduction of ‘canonical transfor-
mations’ to reduce the problem of integrating the equations of motion
to a known mathematical formulation. From this theory of canonical
transformations we were able to derive a perturbation theory (Chapter
1, § 4) which displays close similarity to classical perturbation theory.
On the other hand we were able to trace a connection between quantum
mechanics and the highly-developed mathematical theory of quadratic
forms of infinitely many variables (Chapter 3). Before we go on to

Editor’s note. This paper was published as Z. Phys. 35 (1926) 557-615.
1 W. Heisenberg, Zs. f. Phys. 33 (1925) 879.

M. Born and P. Jordan, Zs. f. Phys. 34 (1925) 858.

Henceforth designated as (Part) I.
2 Note added in proof:
A paper by P. A. M. Dirac (Proc. Roy. Soc. London 109 (1925) 642), which has
appeared in the meantime, independently gives some of the results contained in
Part T and the present paper, together with further new conclusions to be
drawn from the theory.
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discuss the presentation of this further development in the theory,
we first endeavour to define its physical content more precisely.

The starting point of our theoretical approach was the conviction
that the difficulties which have been encountered at every step in
quantum theory in the last few years could be surmounted only by es-
tablishing a mathematical system for the mechanics of atomic and
electronic motions, which would have a unity and simplicity comparable
with the system of classical mechanics, and which would entirely consist

of relations between quantities that are in principle observable. Ad-
mittedly, such a system of gquantum-theoretical relations between
observable quantities, when compared with the quantum theory
employed hitherto, would labour under the disadvantage of not
being directly amenable to a geometrically visualizable interpretation,
since the motion of electrons cannot be described in terms of the
familiar concepts of space and time. A characteristic feature of the

new theory lies in the modification it imposes upon kinematics as
well as upon mechanics; a notable advantage, however, of this quantum
mechanics consists in the fact that the basic postulates of quantum

theory form an inherent organic constituent of this mechanics, e.g.,
that the existence of discrete stationary states is just as natural a
feature of the new theory as, say, the existence of discrete vibration
frequencies in classical theory (cf. Chapter 3). If one reviews the
fundamental differences between classical and quantum theory,
differences which stem from the basic quantum theoretical postulates,
then the formalism proposed in the two above-mentioned publications
and in this paper, if proved to be correct, would appear to represent
a system of quantum mechanics as close to that of classical theory as
could reasonably be hoped. In this context we merely recall the
validity of energy and momentum conservation laws and the form of
the equations of motion (Chapter 1, §2). This similarity of the new
theory with classical theory also precludes any question of a separate
correspondence principle outside the new theory; rather, the latter
can itself be regarded as an exact formulation of Bohr’s correspondence
considerations. In the further development of the theory, an important
task will lie in the closer investigation of the nature of this corre-
spondence and in the description of the manner in which symbolic
quantum geometry goes over into visualizable classical geometry-
With regard to this question, a particularly important trait in the
new theory would seem to us to consist of the way in which both
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continuous and line spectra arise 1n it on an equal footing, i.e., as
solutions of one and the same equation of motion and closely con-
nected with one another mathematically (cf. Chapter 3, § 3) ; obviously,
in this theory, any distinction between ‘quantized’ and ‘unquantized’
motion ceases to be at all meaningful, since the theory contains no
mention of a quantization condition which selects only certain types
of motion from among a large number of possible types: rather, in
place of such a condition one has a basic quantum mechanical
— equation (Chapter I, § 1) which is applicable to ail possible types of
motion and which is essential if the dynamic problem is to be given
a definite meaning at all.

Now, although we should like to be able to conclude that because
of its mathematical simplicity and unity, the proposed theory might
reproduce essential characteristics of the actual conditions inherent
in problems of atomic structure, we nevertheless have to realize, that
the theory is not yet able to furnish a solution to the principal diffi-
culties in quantum theory. The theory has not yet incorporated the
forces which in classical theory would be associated with radiation
resistance, and in connection with the question of how the coupling
problem is to be related to the quantum mechanics postulated here,
there exist but a few indistinct indications (cf. Chapter 1, § 5). Never-
theless it would seem that these basic quantum-theoretical difficulties
assume an altogether different aspect in the new theory than
hitherto and that one might indeed now be more justified in hoping
that these problems will in due course be solved. We consider, for
instance, the question of collision processes. Recently, Bohrl called
attention to the basic difficulties which (in the theory as employed
hitherto) confronted all attempts to reconcile the fundamental postu-
lates of quantum theory with the law of conservation of energy in
fast collisions. In the present theory, however, the fundamental
principles of quantum theory and the principle of conservation of
energy follow mathematically from the quantum-mechanical equations,
and hence the results of the Franck-Hertz collision studies would
seem to be natural mathematical consequences of the theory. One
may thus hope that a future treatment of collision problems based
on the new quantum mechanics may, just because of this organic

1 N. Bohr, Zs. f. Phys. 34 (1925) 142.
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relationship between the basic postulates and this mechanics, avoid
difficulties of the type mentioned above.

The question of the anomalous Zeeman effect seems to be hardly
different when handled by the theory proposed here than it was before,
It is true that the intimate connection between the ‘aperiodic’ and
the ‘periodic’ orbits inherent in the basic assumptions of this theory
entails the fact that we cannot be certain that Larmor’s Theorem
holds generally (Chapter 4, § 2); the assumptions for the validity of

the theorem are satisfied by an oscillator, but not necessarily by a
nuclear atom. It is not likely, however, that this standpoint can lead
to an interpretation of anomalous Zeeman effects; rather the present
quantum mechanics may in the case of Zeeman effects have to
content with the same difficulties as the previous theory. Recently,
though, the problem of anomalous Zeeman effects has entered a new
phase as a result of a Note published by Uhlenbeck and Goudsmit.1

These authors make the assumption that the electron itself posseses
a mechanical and a magnetic moment (whose ratio should be twice as
large as for atoms), so that there should actually be no anomalous

Zeeman effects. By this assumption, difficulties as to statistical
weights are eliminated and a qualitative explanation of wvarious
phenomena connected with problems of multiplet structure and Zee-
man effects ensues. The question as to whether it can already
furnish a quantitative explanation of these phenomena can, of
course, be answered only after more rigorous investigations using the
methods of quantum mechanics. Some of the results contained in
Chapter 4 appear, as regards the Zeeman effects, to substantiate this
hope of finding a quantitative interpretation at some later date.
Finally, we have also attempted to treat a well-known statistical
problem by means of the methods furnished by the present theory.
It is well known that by quantizing the vibrations of a cavity within
reflecting walls and using classical methods one can arrive at results
which display a certain similarity with the hypotheses in a theory of
light quanta and which permit a derivation of Planck’s formula.
However, as Einstein2 has always stressed, this semiclassical treat-
ment of cavity radiation yields an erroneous value for the mean square
deviation of the energy in a volume element. This result must be

1 G. Uhlenbeck and S. Goudsmit, Naturwiss. 13 (1925) 953.
2 A. Einstein, Phys. Zs. 10 (1909) 185, 817.
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regarded as a particularly serious objection to earlier methods in
quantum theory, since we are concerned here with a breakdown of
the theory even for the simple problem of a harmonic oscillator. On
the other hand, the above difficulty would arise in the statistical
treatment of the eigenvibrations of any mechanical system whatsoever,
e.g., a crystal lattice. Now, we have found that with the kinematics
and mechanics inherent in the theory presented here, the corre-
sponding calculation leads to a correct value for the mean square
~— deviation and also to Planck’s formula, a result which may well be
regarded as significant evidence in favour of the quantum mechanics
put forward here.

CHAPTER 1. SYSTEMS HAVING ONE DEGREE OF FREEDOM

1. Fundamental principles
I. A quantum-theoretical quantity a, whether representing a coordi-

_ nate or a momentum or any function of both, is depicted by a set of

quantities

a(nm)e2air(nmt (1)

or (on leaving off the factor e2#i»(nm)¢ which is the same for all quanti-
ties belonging to a given system and which depends only upon the
indices # and m) by the set of numbers

a(nm). (2)

We can thus speak of an infinite ‘matrix’ a.

II. Elementary operations such as addition and multiplication of
quantum-theoretical quantities are defined in accordance with the
operational rules of matrix calculus.

I11. Consider a given function f(x1, xg,...,xs) defined through addition
and multiplication of given matrices, with xj, xs,...,xs denoting quan-
tum-theoretical quantities. We then introduce two types of derivatives
of f with respect to one of the quantities x (say, xi):

(a) Differential coefficient of the first type:

of . flxa + el x2, ..., x5) — f(x1, X2, ..., Xs)
1m

ox 1 a—0 o

, (3)
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where « represents a number and 1 the unit matrix defined by

a44
— I

0 ,, n % m.

(v ¢
f I 8

1= (6nm): Onm :i

3

oar
Ul

(b) Differential coefficient of the second type: Defined throughl

of _eD(p)
L (nm) = prare (4)
—  where D(f) represents the diagonal sum of the matrixf.

These two forms of differentiation will be distinguished typo-
graphically by different fraction strokes [thick stroke for (a), thin
for (b)].

The treatment in Part I employed differentiation of the second
type exclusively since this leads to a simple formulation of the vari-
ational principle of quantum mechanics and hence appears to be the
more natural. However, for some calculations derivatives of the
first type are more convenient to employ. It might be mentioned
generally that the introduction of a differential coefficient into
quantum mechanics is somewhat of an artifice and that the operations
on the left-hand side of the formula (6) which follow represent the
natural counterpart to differential coefficients in classical theory.
For the formulation of canonical equations it is important to establish
the fact that both species of differentiation (3) and (4) become identical
in the case of the energy function? H(pq).

1 Cf. Part I [paper 13 in this volume].
2 For the energy function H of Part I, instead of arbitrary functions such as

H* — 2 asrp*q’,

only those symmetrized functions giving rise to the same Hamilton equations
were permitted:
1 8
b ps—lqrpl'
s+ 1 =0

szaar

Now, for these symmetrized functions H the following relations, derived in
Part I, apply:

oH » ! {sil( l 1-lgrpl 23;; 1 11}
= s — Dp*=i-lgpt + 2 iptiqTpt”
op s+ 1 1D =1
8—1 aH
- s-1-lgrpl — —
z a”I:ZOp qp 2

oH r 8 71 oH
— E Asr Z ps—lqr—lpl — 2 Agr Z qr"l'-fPqu R i
9q s+1 1=9 i=0 oq




15 ON QUANTUM MECHANICS II 327

IV. Calculations involving quantum-theoretical quantities would
yield non-unique results because of the inapplicability of the commu-

tative rule in multiplication unless the value of pg—qp were pre-
scribed.l Hence we introduce the following basic quantum-mechanical
relation:

h
PQ“‘IP:—Zn—il- (5)

We shall later discuss the physical significance of this relation ac-

cording to the correspondence principle. At this stage it would appear
important to stress that eq. (5), ch. 1, is the only one of the basic
formulae in the quantum mechanics here proposed which contains
Planck’s constant 4. It is satisfying that the constant % already enters
into the basic tenets of the theory at this stage in so simple a form.
Furthermore, one can see from eq. (5), ch. 1, that in the limit 2=0,

€ y wou Ver ica , as is physically
required.

A relation which will later prove important can also be derived from

eq. (5), ch. 1, namely:
If f(pq) be any function of p and q, then
of h
fqQ —qf = W om
i ©

since, if we assume these formulae to be valid for some given pair of
functions, ¢ and ®, then they must also hold for ¢+ and ¢ -3. The
former case, -+ is trivial; for the latter, ¢ -, a simple calculation
yields:

P YPq — 9P = @(¥q9 — q¥) + (pq — 9P)¢

=tp(w 8qo¢) b opy) h

op + op 271 op 2ni

for py—pup, the treatment is similar.

Now, the relations (6) hold for p and q. They must accordingly also
apply to every function f which can formally be expressed as a power
series in p and q.

E]

! The equations of motion merely indicate that this difference has to be a
diagonal matrix.
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2. The canonical equations, energy conservation and frequency
condition

Let an energy function H(pq) be given, together with the associated
canonical equations

. oH . oH
p=— % T (7)
It follows from the frequency combination principle
v(nm) + v(mk) = v(nk) (8)

that » can be expressed in the form

Wa — W)
= :

©)

v(nm) =

We now introduce a quantum-theoretical quantity W, as ‘term’,
defined through

W, f =
W(nm):! n for n = m

n £ / "
[V 10T % = M.

Thus W is a diagonal matrix.
Then for any quantum-theoretical quantity whatsoever, the fol-
lowing relation holds:

a= —2-;? (Wa — aW). (10)

In fact a was (cf. Part I) defined through
a(nm) = 2niv(nm) a(nm).

Among the main tenets of the theory we here seek to build up, we
class the law of conservation of energy (H=constant) and the frequency
condition

H, —H
(v(nm) = JTJ i Hy=Wy,+ const).

We carry the proof through for both these conditions by inserting

egs. (6) and (10) into eq. (7), ch. 1. This yields

Wq — qW = Hq — qH

(11)
Wp —qW = Hp —qH
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or, equivalently,
(W — H)g — q(W — H) =0,
(W —H)p —q(W — H) =0.

The entity W—H commutes with p and g, and hence also with every
function of p, g, in particular with H:

(W — H)H — H(W — H) = 0.

H=0. (12)

Thereby the law of conservation of energy is proved, and H is estab-
lished as a diagonal matrix, H(nm)=~06,nH .
The frequency condition now follows directly from (11), ch. 1:

| (wm) (Ha — Hu) = glam)(Wo — W), (13)
1.e.,
(Hy — Hu)

h

= v(nm). (14)

Thus far, we have proved energy-conservation and the frequency
condition from the canonical equations and the basic equation (5),
ch. 1. In corollary, we can, however, also invert the proof. We know
energy conservation and the frequency condition to be correct. Hence
if the energy function H be given as an analytical function of any
variables P, Q then, provided that

h
PQ — QP = —1
Q Q i »

the following canonical equations always apply:

G s
~ P=— (15)

This follows directly from the fact that the quantities PH—HP or
HQ—QH can be interpreted in a twofold manner, namely according to
(6), ch. 1 and according to (10), ch. 1.

3. Canonical transformations
By a ‘canonical transformation’ of the variables p, q into new variables
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P, Q, we understand a transformation in which

h

pq—gp=EQ— QP =—=, (16)

as is suggested by the preceding considerations, since then the same
canonical equations (7), ch. 1, or (15), ch. 1, apply to P, Q as to p q.
A general transformation which satisfies this condition is

P — SpS-1

Q = Sq5-1, )
wherein § stands for an arbitrary quantum-theoretical quantity. We
would surmise that eq. (17), ch. 1, represents in fact the most general
canonical transformation. The transformation (17), ch. 1, also has
the simple property that for any function f(P, Q) it follows that

f(P, Q) = Sf(p, q)5~1, (18)

wherein f(p, q) is formed from f(P, Q) on replacing P by p and Q by g,

in the sense of our above definition follows directly from the obser-
vation that the rule holds for sum and product with sum terms or
factors p, q.

The importance of the canonical transformation is due to the
following theorem: If any pair of values pg, qo be given which satisfy
eq. (15), ch. 1, then the problem of integrating the canonical equations
for an energy function H(pq) can be reduced to the following: A
function § is to be determined, such that when

p=SpoSL, g =SqoS (19)
the function
H(pq) = SH(poqo)S™* = W (20)

becomes a diagonal matrix. Equation (20), ch. 1, is the analogue to the
Hamilton partial differential equation, and in a sense stands for the
action function.

4. Perturbation theory

We consider a given mechanical problem defined by the energy
function

H = Ho(pq) + AH1(pq) + A2H2(pq) + ... (21)
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and assume the mechanical problem defined by the energy function
Ho(pq) to be solved. Thus solutions pg, qo of this problem are known;
they satisfy the condition pogo—qopo=(%/271)1 and cause Hy(pogo) =Wo
to be a diagonal matrix. We then seek a transformation function §
such that

p="5poSt,  q=5q¢5, (22)
and that
H(pq) = SH(poqo)S~1 = W,

e.g., that the matrix H becomes diagonalized. To arrive at a solution
we try setting
S=14+ 251+ AS3 + .... (23)
Then
Sl =1 — AS; + 22(S3 —Sp) + 43 ... (24)

If for H we take the expression (21), ch. 1, we can collect together
powers of 4 to obtain the following equations of approximation:

Ho(Poqo) = Wo

- St —=HSsr +Hr =W
SeHo — HoS2 + HoS; — S1HoS1 + S1H1 — HiS1 + Ha = W, (25)

SrHo - HOSr + Fr(HO, seey Hr, SO, reny Ssr-—l) = Wr
where Hp, Hi, ... are throughout to be taken as having arguments
PO: do.
The first of the egs. (25), ch. 1, is already satisfied. The others can
be resolved in sequence, actually in just the same manner as in classical
theory, namely by first building the mean value in order to determine

the energy constant, after which the solution can straightway be
written down:

W, =F, (26)
_ Fy(mn)
Sr(mn) = W (1 == anm),

where vo(nm) are the frequencies of the unperturbed motion. This
solution satisfies the condition

§-5* =1, (27)

wherein the tilde represents interchange of rows and columns (transpo-
sition) and the star denotes that we take the complex conjugate
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quantity. Since we shall later return to this condition from a more
general standpoint we confine ourselves at this stage merely to veri-

fying it to the first order of approximation, which we shall evaluate
right away. To this order, the relation runs

S1 + S =0. (28)

The significance of eq. (27), ch. 1, lies in the fact that the Hermitian
character of the matrices p, q follows from it, since use of (22), ch. 1,

shows?t that
- -~ ~
q" =5'qgs" 1 = 571905 =g,

and analogously for p.
To first approximation it follows from (26), ch. 1, as also classically,
that

Wi = Ay, (29)
so that
H
Sy(mn) = ﬁ%ﬁ% (1 — Smn). (30)

This expression indeed satisfies the requirements (28), ch. 1, because
H, is assumed to be a Hermitian form. We can now evaluate the
energy to the second order of approximation and find

Wy = Fy 4 L 5 Hal)H ()

h l 1’0(?@2) ’ (31)

where the prime on the summation indicates that terms having a
vanishing denominator (/=#) are to be excluded.

One can progress in this way and successively determine all terms
of the W and S series. If we substitute the S series in (22), ch. 1, we
obtain the expansions

q9 = qo + Aq1 + A%q2 4 ...,
P = po + Ap1 + A%p1 + ...

with known coefficients. Thus, for example, the first-order approxi-
mation runs

91 = 5190 — qoS1,

P1 = S1po — PoS1;

1 On noting the rule (:b)=5 a.
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or, explicitly,
| . ( Hi(mk)go(kn) _ qo(m)H(kn) \

qalmn) = 2 2\, ) vo(n)
! Hy(mk)qo(kn)  qo(mk)H1(kn) .
, 1\"~E)qo o\m 1\=N
palmm) = 5 2 ( vo(mk)  wo(kn) )

The formulae (32), ch. I, represent the outcome of Kramers’ dis-
e L 4ha limit of an infinitale lowt

field; this possibility of attaining a simple derivation of formulae
otherwise obtained only on the basis of correspondence considerations
seems to provide a strong argument in favour of the theory put
forward here. Born2 has derived eq. (31), ch. 1, on reinterpreting the
respective classical formulae. The terms with m=n» in eq. (32), ch. 1,
correspond to Kramers’ formula for normal dispersed light and the
remaining terms (m#n) correspond to the formulae of Kramers and
Heisenberg3 for ‘scattered light of combination frequencies’. The latter
expressions were used by Pauli4 to evaluate the intensities of tran-
sitions in Hg which take place in presence of external electric fields
and which would otherwise be ‘forbidden’. In order to derive the
general dispersion formulae (if the frequency of the external field does
not vanish), one needs more general considerations regarding the
action of external fields which change in function of time. We now
pass over to such considerations.

5. Systems for which time-variables enter explicitly into the
‘energy function’

Treatment of the quantum-mechanical influence of external forces
which explicitly depend upon time seems to us to be of especial
interest in that therein some characteristic differences crop up between
classical and quantum mechanics. The problem of the action of time-
dependent external forces can be regarded as a limiting case of the
Interaction between two systems in which the influence of the inter-

1 H. A. Kramers, Nature 113 (1924) 673; 114 (1924) 310; cf. also R. Ladenburg,
Zs. f. Phys. 4 (1921) 451; R. Ladenburg and F. Reiche, Naturwiss. 11 (1923) 584.
® M. Born, Zs. f. Phys. 26 (1924) 379.

3 H. A. Kramers and W. Heisenberg, Zs. f. Phys. 31 (1925) 681.

4 W. Pauli, Verh. d. Din. Akad. d. Wiss. (in press).
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action on one of the two systems (termed system 4) is so small that the
action upon the other system (system B) remains unaffected by this

influence. If we now consider the coupling of two systems 4, B from
the standpoint of quantum mechanics, the Hamilton function decom-
poses into three parts, Hy, AHp and eAH p (with A at this stage an
arbitrary parameter and ¢ a small quantity). We take system 4 to be
known. For calculating the motion of B according to classical theory it
suffices to establish the equations of motion [from the Hamilton

1 B+ €EMARB ordi ’ €
coordinates of A one substitutes their solutions in function of time
(for the definite given values of the constants in 4). By this means,
apart from the constants of A only the time enters as a new variable
into the perturbation problem for B when the reaction is neglected.
In the quantum-mechanical calculation the situation is just the same,
providing we restrict ourselves to first-order perturbations (i.e.,

terms proportional to ¢ in the coordinates and momenta of the system
B). It is altogether otherwise, however, for higher-order perturbations,
since in the evaluation of higher-order perturbations we encounter

products of quantities in which more than one implicitly contains
the coordinates of A. But this means that according to the quantum-
mechanical rule for building a product it by no means suffices to know
the ‘external forces in function of time’ merely for the given values
of the constants in A, but these external forces must be known for
all values of the constants. Thereby, however, the concept of external
forces appears in fact to become devoid of meaning. This difficulty
seems to us to be overcome on observing that the reaction itself
gives rise to terms of order Ae2 in the coordinates of B, and thus that
simultaneous neglect of the reaction and evaluation of terms in B
containing 2 is meaningful only if A can also be taken to be very small,
i.e., physically, if variation of the quantities in A by amounts of the
same order as the associated quantities in B does not bring about
any perceptible change in the influence of A upon B. However, in this
approximation the quantum-mechanical construction of products
and thereby the calculation of the perturbations to higher orders in ¢
can again be effected. In fact, the rules for this building of products
reduce simply to those of classical multiplication, as in this approxi-
mation the coordinates, amplitudes and frequencies which enter into
H4p do not depend on the constants in 4. In this sense one could, for
example, treat the action of a strong alternating electromagnetic field
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on an atom entirely as the influence of an ‘external force” with neglect
of the reaction, since the field energy can be regarded as infinitely

Jarge compared with that of the atom. The action of a-particles upon
the electrons of an atom could also be regarded as an ‘external force’,
as in classical theory, because of the relatively large energy of the
a-particles, so that in this approximation the Fourier expansion of the
force thereby exerted upon the electrons would also be that of classical
theory. However, the action of forces due to one atom upon another
can never r I =T.e., it can
thus be regarded only in the first-order terms, for which such an
approach is always possible — since the neglect of the reaction would
in the higher-order terms lead to false results.

We can summarize the outcome of our considerations thus: It is
meaningful under certain assumptions in quantum as in classical
theory to speak of the action of time-dependent forces upon an atom.

In such instances, the classical calculation rules can be applied to
expressions in which the time parameter figures explicitly: e.g., if
the external field of force be periodic with a period »¢, then the general

term of a coordinate q can be written as
q(m”, T) e?ni[ﬂ{mn)-{-—rvo]t’ (33)

and the general term of ¢2 as

3 gmk, v —7)g(bn, 7)ol (34)

For this reason the case of external forces which vary with time seems
in our view to provide a striking illustration of the transition from
theoretical quantum kinematics into classical kinematics according
to the principle of correspondence.

If one is concerned with the evaluation of the operation of external
forces to first order only, the results which ensue from the calculations
which follow remain correct even if the assumptions listed at the
outset are not obeyed — in exact analogy with the situation in classical
theory.

From the preceding considerations it follows that the mathematical
treatment of systems in which (provided the assumptions mentioned
above are valid) time enters explicitly is simply to be handled in a
manner analogous to the corresponding classical procedures. If we
again assume the external force to be periodic in time, with period



336 M. BORN, W. HEISENBERG AND P, JORDAN 15

v9, the Hamilton function becomes?

] | Fi

H=H{(p%, g%, cos 2nvol)- (3.1))

We then introduce a new degree of freedom with the variables q’, p’
and take the following as the Hamiltonian of the new problem, in
which time no longer figures explicitly:

H' = H(px, q; q)) + 2oVl — q'2p’. (36)

Thereby the canonical equations for pg, qx remain as hitherto, except
that q" is throughout written for cos 2nvef. The new equations are:

. oH’
q = PO 27vV'1 — q'2,
37
; oH’ oH q’ )
P!:_— F =S f+2nv9 P"
q oq V(1 — q'2)

The first of these equations asserts that q" indeed becomes equal to
that the canonical equations for pg, qx take on the same form as in the
earlier problem; the second equation (37), ch. 1, provides a determi-
nation of p’. Thus through (36), ch. 1, the problem (35), ch. 1, is really
led back to cases already treated.

Of paramount interest is the question as to the manner in which
the perturbation formulae (25), ch. 1, have to be modified if time
enters explicitly into Hj, Hs,... but not into Hy. Simple considerations
show that for this case the perturbation formulae ensue from those
cited earlier on replacing every term of the form HeS,—S,Ho by

(note that Hg occurs only in such combinations). Thus the lowest
orders of the new perturbation formulae run:

Ho(Poqo) = W,

h oS
SiHo — HoS1 — ——— —— 4 Hy = Wi, (38)
2n1 ot

1 Here we anticipate for a moment in availing ourselves of results derived in
the next chapter for systems having several degrees of freedom.
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n 05 h 05
SeHo — HoSz — o 3—: (Hosl — S1Ho + =] E‘) S1 (38)

+ S1H1 — HiS1 + Ha = Ws,

........................

We should like to assume that even if the assumption that the external
forces are periodic in time does not apply, these formulae (38), ch. 1,
nevertheless remain valid — even though this assumption was incor-

porated into the derivation of the formulae.

The first-order equations in the formulae (38), ch. 1, which of
course remain correct even if the assumptions regarding ‘external
forces’ are no longer valid, taken together with egs. (22), ch. 1, viz.

9 = qo0 + A(5190 — q051),
P = po + A(S1Po — PoS1),

furnish an answer to the problems of dispersion theory in a general
sense. In actual fact, if we set:

Hy = Eeqg cos 2nvyt,
then

Ee Ee
Hi(mn, 1) = y go(mn), Hiimn, — 1) = - go(mn),

Ee  go(mn)

2h vo(mn) “+ v 4
Ee go(mn)

2h vg(mn) — Y0 .
Thence follows (cf. (22), ch. 1):

Ee qo(mk)qo(kn)  qo(mk)qo(kn)
2h § ( vo(mk) +vo  wolkn) + o ) )

(39)

Si(mn, 1) =

Simn, — 1) =

qi(mn, + 1) =

If we assume that we have Cartesian coordinates, i.e., p=mg, then

Ee qo(mk)po(kn) — po(mk)qo(kn)

2h-27im 5 (vo(mk) + o) (vo(kn) + v0) (41)

qi(mmn, 1) =

and similarly
Ee qo(mR)po(kn) — po(mk)qo(kn)

2h - 2nim k (vg(mk) o—— vo) (vo(kn) T ‘Vo) . (42)

1(mn, — 1) =
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e egs. ; ; , ch. 1 agree wi e formulae obtained from
Kramers’ dispersion theory.! A further particularly interesting case

would seem to be that for incident light of very high frequency,
|vo|>>|vo(mk)| or |vo(kn)|. Then to first-order approximation one finds

Ee
N — — cos 2mygt,
or, because of (5), ch. 1,
g1 = + 43-52%1;{2) COS 2317015. (43)

This finding indicates that in fact the quantum-mechanical commu-
tation relation (5), ch. 1, ultimately entails the fact that for sufficiently
high frequencies the electron behaves on scattering like a free electron.

a - -' :- 0 ﬂ"-- "'I "i“.‘ i % _.. -.- (] a
of frequency v has the intensity to be expected for scattering by a free
electron.?

CHAPTER 2. FUNDAMENTALS OF THE THEORY FOR
SYSTEMS HAVING AN ARBITRARY NUMBER
OF DEGREES OF FREEDOM

1. The canonical equations of motion; perturbation theory for
nondegenerate systems

For several degrees of freedom (f>1) it rather suggestsitself that we re-
place the representation of quantum-theoretical quantities by two-
dimensional matrices by one in terms of 2f-dimensional matrices,
corresponding with the 2f-dimensional manifold of stationary states
in the classical J-space:

9k = (qx(m1 ... ng, m1 ... m,«)), (1)

Pk = (;bk(nl vee Np, MY . mf))
Nevertheless this representation, albeit under certain circumstances
1 Cf. the discussion at the end of § 4 of results obtained for »o=0.

2 Cf. the articles by W. Kuhn, Zs. f. Phys. 33 (1925) 408; W. Thomas, Natur-
wiss. 13 (1925) 627; F. Reiche and W. Thomas, Zs. f. Phys. 34 (1925) 510.
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very convenient and clear, is by no means essential. Even for several
degrees of freedom the fundamental dynamical equations assume the

form of matrix equations, but these matrices can as heretofore also be
written in two-dimensional form. It became apparent even for ome
degree of freedom that the sequence of the stationary states as given
by the ordering of the matrix rows is (in contradistinction to the
theory employed hitherto) purely fortuitous and is not governed by
any intrinsic property of the system. This observation can now

directly be referred to many-dimensional matrices too; one can carry
out any arbitrary rearrangements and in particular transform the
2f-dimensional matrices into two-dimensional ones. This is justified
by the fact that the basic definitions of addition and multiplication,
as also of differentiation with respect to time, are clearly independent
of any ordering relations between the basis systems of indices nj,
ng,..., ng, which taken simgly specify the states and in pairs specify the

transitions.
It is thence also clear that the general rules of matrix analysis, as
presented in chapter 1 of Part I and in chapter 1 of the present paper,

can be employed in the theory of systems having several degrees of
freedom also. One can similarly take over the derivation of the equa-
tion of motion from the variational principle in I directly, so that
we can in like manner write

. oH ) oH
qk = —, Pr =

_— 2
P P, (2)

The principal new feature distinguishable from those obtaining for
systems with just one degree of freedom lies in the general commu-
tation relations for px and qx in the case of several degrees of freedom.
Just as in the calculations for but one degree of freedom, so here also
calculations with quantum-theoretical quantities would be to some
extent indefinite if the ‘commutation relations’ were not specified.

As a plausible generalization of eqs. (5), ch. 1, the following equa-
tions suggest themselves:

h

- L ™
PGt — Qi = —— Ok

pxp1 — pipx = O,
9xq1 — qux = 0O,

(3)
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1t i denotes the (symmetrized) energy function, one can in conse-

quence of these relations replace egs. (2), ch. 2, by

. oH : oH @
k= — k= — =
q ohr . )
Further, it follows from these relations,! as in chapter 1 of the present
paper, that

h_of

Pef(q1 ... 97, P1 ... Pr) — fPr = P
hooof (4)

fq.'c—q.tf="2—n—i35;-.

The proof of energy conservation and the frequency condition then
follows from (2’) and (4), ch. 2, as shown in ch. 1. Similarly one can

show with the aid of (3) and (4) that the canonical equations (2'),
ch. 2, apply whenever the relations (3), ch. 2, are satisfied for a system
Pk, Qx and the energy function is given as an analytical function of

— the Py and Q.
Thus a transformation of the variables pg, qx into new variables
Pk, Qx is termed ‘canonical’ if it leaves the relations (3), ch. 2, unaltered.
A very general class of such transformations is again given by the
formulae

Px = SpxS—1,
Qr = SqxS~1.

This transformation again has the property of converting every
function f(PQ) into

f(P1, ..., P, Qu, ..., Qp) =5f(P1, -, P1, 91, -+, q1)S72. (6)

If a system p}, ..., p}, q}, ..., q is known, and satisfies the relations
(3), ch. 2, then the problem of integrating egs. (2), ch. 2, again reduces
itself to the simpler problem: A function S is to be sought, such that
it satisfies the equations

()

Pk = Spgsal’ (53)
qr = SqiS1

1 The physical significance of these relations for dispersion theory is discussed
by H. A. Kramers, Physika, December 1925.
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and transforms H into a diagonal matrix,

Equation (7) again represents the counterpart to the Hamilton
partial differential equation.

Equations (3), ch.2 would, together with (2), ch.2, obviously
entail too extensive a set of requirements for the pg, qx, if all these
equations were independent of one another. As an interesting mathe-

~— matical problem must rank the derivation of eqs. (3) using the least
number of independent and mutually consistent assumptions; never-
theless, this question will not be handled here. We shall content
ourselves with mentioning that

d .
= _ il
3 % (Px9x — qibr)

is a general outcome of the equations of motion (1), ch. 2. On the
other hand, it will be shown generally that the egs. (3), ch. 2, together
with the equations of motion (2), ch. 2, or the equivalent requirement
(7), ch. 2, can be satisfied (singular discrepancies apart, of course).

This proof is to be supplied in connection with the generalization of
the perturbation theory presented in ch.1 §4, when extended to
arbitrarily many degrees of freedom. We consider the energy function
H(pq) such that it can be written as

H = Ho(pg) + AH1(pg) + A2Ha(pg) + ..., (®)

so that
f
Ho(pg) = = H®(pis).

Thus for A=0 we have [ uncoupled systems, each having a single
degree of freedom; the f cases

H = HO(peg)
can be solved with
qk = qg: qk = Pg'
wherein qj, py are two-dimensional matrices,
a5 : (gh(nm));  pp: (PR(nm)). (10)

If we formally regard these f uncoupled systems as a single system
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having f degrees of freedom, then qf, p) would be represented as
2f-dimensional matrices,

(1)

o= (qi(n1...ng; my ... mf))’}
pr= (Ph(m1 ...y, my ... my)),

for which

Qny ... ng; my ... my) = dxq(nimy),

pAmy ... mg; my ... mg) = Sppr(npmi),

where dx=1 if nyj=m; for all j except j==&, and dx=0 if for any j(j #&),
n; is not equal to m;. Thence, however, one sees: firstly, that the
equations

h

L

14
1

0.0 0,0
Pr9x — 9xPx =

2ni

which originally obtained for the fwo-dimensional matrices (10), ch. 2,

-

y . y »

the following relations ensue:
Pl —qipr =0 for I3k,
PRP! — PiPk = k9] — 9% = O.

Hence for A=0, all the egs. (13), ch. 2, indeed apply. It is to be shown
that p, g can be determined in such a manner that (3), ch. 2, is satis-
fied simultaneously with H=W for the higher-order approximations
also. One again assumes the system Hp to have been chosen as non-
degenerate, i.e., that on substituting q=q° p=p°® no two diagonal
elements of Hp become identical. In this case we again have to set

Gk =SqiS7L;  pr = Spes (14)

(13)

as in eq. (5a), ch. 2, and to determine
S=1+4 A5; + 4253 + ...

in such a way as to satisfy the relation H=W. The egs. (3), ch. 2, are
then jointly also satisfied, since by virtue of (14) they go over into
(12), (13). This completes the required proof.

Equations (3) are invariant with respect to a linear orthogonal
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transformation of the q; and pg, for if one sets

qr = 2, axiq1,

1
Y akiag = Ok,
= Y, Akip1, 1
1

then

h

Pkql — qipk = E axnaiy(Pnqs — qsPn) = Okt T

and similarly for the other respective relations. If then the conditions
(3), ch. 2, hold for a given Cartesian coordinate system, they will also
be valid in every other Cartesian coordinate system.

By way of supplement, now that we have established (3), ch. 2,
we demonstrate that a well-known law of classical mechanics is also
compatible with the new theory.

Let
2

H= Ekin o Epot — % E — + Epot’ (15)

and let E, , be a homogeneous function of the coordinates of order =.
Then from (3), ch. 2,

qk (16)

and
d . )
— X pi9k = X (Prqr + Prqr) = 2En — nE ot
ds % k

so that for the mean values,
Exin = $nE . (17)

Hence, e.g., for n=2 (harmonic oscillations), Ekm=Epot and for n=—1
(Coulomb force), Eyyn=—4E -

2. Degenerate systems

We now turn to examination of degenerate systems. If we permit some
of the frequencies »(nm) to vanish (for simplicity, we imagine the
matrices to be in two-dimensional representation), then energy conser-
vation, H=0 can still be derived from the considerations employed
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here and in Part I concerning the equations of motion and the com-
mutation rules (3), ch. 2. But the relation H=0 no longer necessarily

implies that H be a diagonal matrix and in consequence the proof of
the frequency condition cannot be carried through. Thus for degenerate
systems the equations of motion together with (3), ch. 2, do nof alone
suffice for the unique determination of the properties of a system: we
need to strengthen these basic equations. An obvious assumption as
to the form of this ‘increase in rigour’ is:
'l'lf cqiia O'l" TOWLA UE QULE EENEY
relations and the property

H = W = diagonal matrix. (18)
This requirement manifestly ensures the validity of the frequency

condition for degenerate systems as well. Very probably, the energy
W is also thereby uniquely determined (apart from singular instances).

On the other hand, the coordinates qx are not uniquely determined.
Given a solution pg, qx of H(pq)=W, we can get new solutions from

p’ = SpS-1,

19)
q = SqS-1. (

Thence
Hp'q) = W' = SWs-,
and the requirement W’'=W yields

Ws —sw=§—"_ —o,
2m1
and thus
S = const. (20)

Let us at this stage examine this result as regards its implications
for nondegenerate systems. From (2), ch. 2, the matrix § has to become

a diagonal matrix, and the eqgs. (19), ch. 2, imply that
P (nm) = p(nm)S, Sy, o
g'(nm) = q(nm)S,. S,

writing S, for S(nn) for the sake of conciseness.
The uncertainty in the solution indicated hereby can significantly
be reduced by the requirement that the new solution p’, ¢ should
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also represent ‘7eal’ motion, expressed in terms of Hermitian matrices,
since this yields

|SnS;l| == ISmS;%II!

or
ISal = |Sml. (21)

Thus the indeterminacy which has here come to light represents an
arbitrariness of the phase constants. We namely here find proof of
state n a phase ¢, always remains undetermined. From (19’) one can
perceive the manner in which these phases enter into the elements of
the matrices p, q. It was further conjectured in Part I that apart from
the above-mentioned arbitrariness of phase for non-degenerate
systems, no additional non-uniqueness is to be expected. It is clear
that we could still add a constant matrix to each of the ‘periodic’
matrices S, in the perturbation calculations of ch. 1 § 4. However,
this obviously does not imply that new phases which remain unde-
termined enter into each approximation. It is easy to see that utili-
zation of this possibility cannot provide any more general solution
p, q provided that p9, q0 were right from the first taken to have unde-
termined phases.

If we now go over to degenerate systems, we cannot any longer
infer from (20) that$ is a diagonal matrix, and accordingly, using (19),
we do indeed have the possibility of deriving solutions p’, ¢ which
are significantly different from p, q. This indeterminacy seems to lie
in the very nature of things. Apparently, degenerate systems possess a
lability by virtue of which arbitrarily small perturbations can bring
about finite changes in coordinates, and this finds its mathematical
expression in that in complete absence of perturbations, the solution
of the dynamic equations remains partly indeterminate. Naturally,
for every actual atom the coordinates which specify the physical
properties of the system, in particular the transition probabilities,
are always fixed uniquely either by external perturbations or by the
previous history of the system.

Now we set out to examine the influence of arbitrary perturbations

upon the degenerate system. We set
H(pq) = Ho + AH1 + A2Hz + ..., (22)

and let p9, q0 be an arbitrary, but definite, solution of the unperturbed
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problem:

o Hlp) =We (28

Then with

p = Spos-1
q = 5q%1,
and with
S =So(1 4+ AS1 + 4252 + ), (24—
S = (1 —A(S1 + ASz ...) + 42...)S; %, (25)
we find, on leaving out the arguments p?, ¢ from Hp, Hj,...:
SoHoS; ! = W, (26)
SoS1HoSy ' — SoHeS1S5 ! + SoH1Sg ' = Wi, (27)
S0S2HoSg ' — SoHoS2S5 ! + SoFa(HoH1Hz; $1)S5 " = We, (28)

......................

SoSrHoSg ' — SoHoSsSg "
e SoFr(HoHl ... Hy, S1 .. S,-_.I)SEI = W,. (29)

Thus we almost repeat egs. (26), ch. 1, but with the difference that the
left-hand sides are throughout multiplied on the left by So and on the
right by S;%.

Equation (26), ch. 2, has already been cited above; So(nm) becomes
zero except for vanishing wg(nm). The remaining arbitrariness in So
now has to be used to advantage so far as possible in order to render
the next equation soluble. Naturally, one cannot expect that every
solution of H=Hy, and thus in particular the chosen solution p9, q°,
will provide the limiting case 4 = 0 of the solution p, q of the problem
(22), ch. 2. The function So should serve to obtain from p9, q0 that
solution of the degenerate problem which possesses this desired pro-
perty.

We can rewrite eq. (27) as

SiHo — HeS1 + H; = SQ“WISO. (30)

To make this soluble, one has to determine S¢ such that
Ffl = SEIWISO (31)

for a diagonal matrix Wi. An indication as to how one can simul-
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taneously satisfy this eq. (31) and the requirements dictated by (26),
ch. 2, can here naturally just as little be given as that for the deter-
mination of secular perturbations in classical theory. We shall, however,
later use a new algebraic method to arrive at a simple treatment of an
extensive class of degeneracies (ch. 3).

If (31), ch. 2, is satisfied, (30), ch. 2, can be solved as in ch. 1.
Thereby those terms Si(nm) of S; for which vo(nm) vanishes remain
arbitrary, and this indeterminacy has to be utilized in order to solve

1 1 3 rans-

cribed as

SsHo — HoSz + Fz = Sy 1WasSo (32)

in order to fulfil the necessary relation

Fa(Ho, H1, Hz; S1) = S5 'WaSo (31')

with Wp a diagonal matrix. This has to be satisfied for the problem
to be soluble. The continuation of the procedure is clear.

The difficulty lies in the fact that at each order of approximation
equations have to be satisfied by matrices which are already fixed to a
large extent, so that it is not perceptible whether or not these equations
will really prove soluble. In classical theory there is, though, an
altogether analogous difficulty. These difficulties can, at least in the
higher orders of approximation, be removed if in some approximation
the system becomes nondegenerate.

Suppose, for example, that p(I) and q( in

q= qo = j'q(l) = wwny
p=p0 4+ Ip® + ...

have really been determined, so that with

Q = qo+ 4q®

P = p0 4 2p®
one has

H(PQ) = Wy + AW1 + A2H3 + A3H3 + ...,
and suppose

vo(nm) + Avi(nm) %= 0 for n # m.
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or brevity we write Hp for Wy 1 and se

p="SPs—1
g =SQs1,

then we have to build the following relation,
S(Ho + A2H3 + A3H3 + ...)S1 = W,
which, with the procedures of ch. 1, can be achieved with

S =1+ 2255 + 4353 + ....

The generalization of these considerations for the case in which only
in the rth approximation can one attain a nondegenerate system
W=Wjyo+AWi+...+2*W, follows of itself.l

In conclusion, we deem it important to point out that the notorious

Lifficult | de ke alaasien] bati
series, which play so decisive a rdle in the discussion of the three-body
problem, do not arise here in quantum-mechanical perturbation
I inite orbits t

periodic also.

CHAPTER 3. CONNECTION WITH THE THEORY OF
EIGENVALUES OF HERMITIAN FORMS

1. General method

The treatment in the preceding sections has aimed at solving the
basic quantum-theoretical equations in a manner as closely parallel
to classical theory as possible. But behind the formalism of this
perturbation theory there lurks a very simple, purely algebraic
connection and it is well worth while to bring this into the limelight.
Apart from the deeper insight into the mathematical structure of the
theory, we thereby gain the advantage of being able to use the methods
and results developed earlier in mathematics. We shall thus arrive
at a new definition of the energy constants (‘terms’) which remains
valid in the case of aperiodic motion also, i.e., of continuously-varying
indices. Thereby we attain the prospect of finding methods for direct

1 Analogous cases in classical mechanics have been discussed by M. Born and
W. Heisenberg, Ann. d. Phys. 74 (1924) 1.
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calculation of the energy without explicitly solving the problem of
motion : methods which correspond to Sommerfeld’s method of complex
integration. We shall then be able to treat perturbations of an ex-
tensive class of degenerate systems completely, which the above-
mentioned perturbation methods were not yet able to handle.

In considering a problem of f degrees of freedom specified by the
energy function H(pq), we can first select any system of matrices
py, qn whatsoever such that at all events the commutation relations

—(3), ch. 2, are satisfied: for example, we can take the pg, qx forasystem
of noncoupled harmonic oscillators.

Then, as mentioned in ch. 2 § 1, the dynamic problem, e.g., the
determination of the pg, qx can be formulated as: A transformation
(pegs) = (Pxqx) is to be found which leaves egs. (3), ch. 2, invariant and
at the same time reduces the energy to a diagonal matrix.

The transformation of matrices can most easily be grasped if one
regards them as a system of coefficients for linear transformations or
bilinear forms. We therefore premise some known results of the
algebra of such forms.

To every matrix a= (a(nm)) there belongs a bilinear form

A(xy) = X a(nm)xnym (1)

nm

of two series of variables xj, x3,... and yj, y2.... If the matrix be
Hermitian, i.e., if the transposed matrix a= (a(mn)) be equal to the
complex conjugate of the original matrix,

*

a=ad*, a(mn) = a*(nm), (2)

then the form A assumes real values if in place of the variables y,
one substitutes the complex conjugate values x,:

A(xx*) = 3 a(nm)xpx;,. (1a)

nm

We recall the readily demonstrable transposition rule
(@) = Ba 3)
and now subject the x, to a linear transformation

Xp = F‘U(lﬂ)w (4)

with the aid of the (complex) matrix v=(v(lx)).
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Then the form A4 goes over 1nto

A(xx") = B(yy*) = X b(nm)ynyy, (5)

with
b(nm) = Y v(nk)a(kl)v*(mi),
Kl

or, in matrix notation,
b = vav*, (6

Sl

This is termed the generation of a matrix b by the transformation v
applied to a.
The matrix b is again of Hermitian type, for, with (3), ch. 3,
b= v'av = v'a

. \
| he matr alled ogrihogc

leaves the Hermitian unit form

E(xx*) = ¥ %2}

n

invariant; from the result derived above, this is the case if and only if
w*=1 or v*=v1, (8)

Thus, for instance, the permutation matrices mentioned in ch. 1 § 2
are real orthogonal matrices.

As is known, it is always possible for a finite number of variables to
effect an orthogonal transformation of a form into a sum of squares
(transformation to principal axes).!

A(xx*) = X Waynyn %)

For matrices, this means: a matrix exists for which
w*=1 and vav* =vav-l = W, (10)

where W= (W 0 nm) is a diagonal matrix.

For infinite matrices, all the cases investigated so far have been
found to obey an analogous rule; it can however occur that the index 7
on the right-hand side runs not only through a set of discrete numbers

1 We write the coefficients of the transformed form W, because in quantum
mechanics they stand for the ‘energy’.
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put also through a continuous range of values; this would correspond?
to an integral constituent of (9) and the transformation (4).

The quantities W,, are termed ‘eigenvalues’, their ensemble is the
‘mathematical spectrum’ of the form, made up of ‘point-’ and ‘con-
tinuous’ spectrum. As we shall see, this is identical with the ‘term-
spectrum’ in physics, whereas the ‘frequency spectrum’ is obtained
from this by forming differences.

This transformation to principal axes now directly presents us with

the solution of our dynamic problem which consists in seeking a

transformation (p%9%) —(pq) such that the egs. (3), ch. 2 are left invariant

and at the same time the energy is brought into diagonal matrix form.
By the above rules of algebra, there exists an orthogonal matrix §

for which

S*—=1, S$*%=1 (11)

and for which the transformations

P = SpyS* = Spis-1,

CA0C* __ ca0c—1

(12)

G =G> =9
leave
(i) the Hermitian character of p, q conserved also for the p, qx;
(1) the egs. (3), ch. 2, invariant;

(iii) the energy
H(pq) = SH(p%)S~1 = W (13)

converted into diagonal matrix form.

We wish to discuss the question of the uniqueness of this solution
and in particular whether one could not generate other energy values
through another orthogonal transformation T. Let us assume that
W', as given by

TH(pogO)T-1 = W/,
is a diagonal matrix which differs from W. One would then have
TS—ISHS-1ST-1 = TS-1W/(TS-1)-1,

1 Up till now, the theory of quadratic (or Hermitian) forms of infinitely many
variables has been developed mainly for a special class (‘bounded’ forms)
(D. Hilbert, Grundziige einer allgemeinen Theorie der linearen Integralgleich-
ungen; E. Hellinger, Crelles Journ. 136 (1910) 1). But here we are concerned
Just with non-bounded forms. We may nevertheless assume that in the main
the rules run likewise.
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and our question is equivalent to asking whether it is possible, starting
from a diagonal matrix W to build another, W’, through te transfor.

mation
W = MWM-1,  MM* =1 (14)

such that W’ can nof be derived from W by a permutation of the
diagonal elements.
However, eq. (14), ch. 3, can be written

WM — MW = 0.

and thus implies
M(nm)(Wyp — W) = 0. (14a)

From the orthogonality of M, it follows in particular for m=n~ that

B B

k k

and consequently for a fixed » neither all the M (nk) nor all the M (kn)
can vanish. But then (14a), ch. 3, shows that for every » there is

certainly an m for which Wy=W,,, ie., all the Wy appear among
the Wp. The same holds inversely.

Thus all solutions derived from (12), ch. 3, lead (for given py, q7)
to the same values for the energies of the stationary states, in accord
with the conjecture stated in ch. 2 that the energies are always
uniquely determined by the fundamental dynamic equations.

Degenerate systems will be characterized by the fact that multiple
eigenvalues occur. The multiplicity of the eigenvalue Wy, i.e., the
number of linear independent solutions v(/n) of eq. (4), ch. 3, yields the
statistical weight of the respective state.

The importance of eq. (9), ch. 3, for our physical theory lies in the
fact that various methods! exist in the algebra of finite or bounded
infinite forms for determining the eigenvalues of a form without
actually carrying the transformation through. It is to be hoped that
such methods will prove of much avail in the future treatment of
certain physical systems.

1 For finite forms, the eigenvalues are the roots of an algebraic equation. Here,
and also for bounded infinite matrices, they can be determined, e.g., by the
method of Graeffe and Bernoulli; see, for example, R. Courant and D. Hilbert,
Methoden der mathematischen Physik 1 (Springer, Berlin, 1924) § 3, pp. 14, 15.
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2. Application to perturbation theory
1 the followi ] , oraliias ’ 1]
dynamic problem not only leads to exactly those formulae which
were previously derived in ch. 1 § 4 in connection with perturbation
theory in classical mechanics, but that when applied to degenerate
systems it is considerably superior to the theory used hitherto.

We thus again assume that H has the form

 H=Ho4 M4 RHy .,

and that the dynamic problem specified by Ho has the solution py, ¢9.
We take these quantities as our starting coordinates from which the
px, qx are to be found, using an orthogonal transformation §. Naturally,
the form assumed for H does not basically represent any limitation in
generality, inasmuch as one can obviously separate off from H a

) - - - - )
componen Ha O AN (] e _orm NOW N On oerfn 0 N

power series in 4 will depend essentially upon an apposite choice of Hy.
To undertake a principal-axes transformation of the Hermitian
form

b Hmnxmx;

mn

we can, as is known, proceed as follows:
We attempt to find a solution of the linear equations

Waxr — 3 H(Rl)x; = O; (15)
l

this is possible only for certain values of the parameter W, namely
W=W,, when W, again denotes the eigenvalues (energy values). We
first assume that no degeneracy is present, so that all W, are different.
Then to each W, there corresponds a solution xy=xg, (determined
except for a multiplicative factor), and hence the identities

Wnxgn — 25 H(kl)xin = O,
i
Wi, — 3 H*(kl)xg, = O
l

obtain. On multiplying the former by x;,,, the latter by xxy, and sum-
ming over k, it follows on subtraction (because of the Hermitian

character of H) that
(Wn -_ Wm) E xknx;m = 0.
k
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By choosing the proportionality factor suitably, one can normalize tq

L x'knxkn = 1.
k

Hence the xg, form an orthogonal matrix
S —_ (xkn).

It is precisely this which transforms the given form to a sum of squares,
since if we substitute

Xk = 2 XknYn

n

into the form, we obtain

Y H(kl)xpxy = ¥ % H(Rl)xkmXimYmYn
Kl

kl mn

bl . B I A ¥ a1 %
= L L TTMAIMAIYMY 0
mn 1

= 2 WnymYm

From our assumption as to the form of H, the coefficients of eq. (15),
ch. 3, now have the form

H(kl) = 6“W? + AH(Rl) + A2H(RI) + ....

We thus seek to find the solution of (15), ch. 3, through expansions of
the form

W = W04 WD 4 22WE) + ...
xp = xp 4+ Ax( + 2222 4 ...

(16)

If we substitute the above in (15), ch. 3, we obtain the approximation
equations

(8) x(Wo—W,) =0,

(b) DO — W) = —WD + 5 HO(R)AS,
l

17)
(©) HIWO — W) = —(PW®D + xOW) (

+ 3 (HOE)HD + HOR)S).
l

It follows from (17a), ch. 3, that W has to become equal to one of the
W, since otherwise all x) would vanish and we could then also infer
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the vanishing of (", x{¥,... in sequence from the subsequent approxi-
mation equations.

If, then, we take our starting system as nondegenerate, and thus
all the W9 as different from one another, the solution of (17a), ch. 3, is

W=w3 4, =9 a,=0 for k#mn. (18)

Herein, y? is an arbitrary number.
If we substitute this in (17b), ch. 3, we find, depending upon whether

k=n or k#mn,
0=yy(— WD 4+ HV(nn)),
DWWy — W3) = HO(kn)y,,  k #mn.

Thus the solution runs

. 1) __ ,,(1).
W@ =’&(llm}s xim). = y‘i& ’

HO (kn) (19)
{1} .o 0 f )3
= Tolkm) O* ke

where again y\ is an arbitrary number.
Hence it similarly follows from (17c), ch. 3, that

1 . HOM@)HO(n)

R Y
g =V
) =( |, HORYHO(n)  HO (nm)HD (k) (20)
on K2 T wo(kn)wo(in) h2vo(kn)2
H(z)(kn)) o HOGm)
= Thwolkn) /7™ dwolkm) T

The solution of the third-order approximation can be derived just as
easily; we cite only the energy value:

1 H(@®) (2) 1)
W® = H® (nn) —-;;Z’ H® (nl) (ano?l_n;{ () HO (In)
l

I (  HO (nl) HO(IR)HD (kn)
kil

= 2 vo(In)vo(kn)

— Hog) 3 =TI )
l

vo(in)?

The quantities ¥, y),..., which for the present are arbitrary, serve
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to normalize the solution (it i1s orthogonal of itself); the conditiop

B A 1
d YN — 1
k

yields, for

Xin = %o + A2 4+ 2243 4 |
the equations
E xknxkn =1

(2.';24%” £ 1'(1)7*0\ =0

b))
] I ""En"k
k
On substituting the solution just obtained, it follows successively that
[ynl? =1
y,.:vﬂ,‘” +Ynyn =0

If we now set
pr) — aapleiwn(m’ (21)

we obtain

0 ...
a, =1

2aV cos (pp — @) =0

245{ ) cos (¢ — (”) =F (")(a(f D, @r-D, ).
Thus the phase constants @2, p{V,... can be chosen arbitrarily; the
ad, alM,... can be evaluated in sequence and determined uniquely.
This stands in agreement with the result we found earlier (§ 3), namely
that the phases of the diagonal terms of S remain undetermined.

On substituting the values a’=1,... obtained above into (21),
ch. 3, and this in turn into (18), (19), (20), ch. 3, we see that the
‘perturbation procedure’ carried through earlier yielded just the
solution for which the phases tp(’” vanish, i.e., for which the diagonal
terms of S are real.

We now turn to consideration of the case in which the starting
system is degenerate and in which W0 is an r-fold eigenvalue. This
means that eq. (17a), ch. 3, has the solution

— . o __ .0 0 .
W = Wﬂ! Xon = yl,m xﬂ.,n+1 =Y2,n

(23)

Xn, n+r—-1 = Vr, n,

2} =0 for ERxn,n+1,...,04+7r—1.
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e left-hand side o , ch. 3, then vanishes for

ER=nn=+1 ..., nF+r—1;

this yields (r) equations:
r
Wyl — 3 HOm + k,n+ly) =0, k=12 ..,7, (24)
=1

whose array of coefficients is again of Hermitian type.

— On setting the determinant to zero, one obtains a secular equation

of the rth order for W :
det (WMézy — HO(n + k,m 4+ 1)) =0, (25)

whose roots are certainly real. To each root. there belong one or more
independent solutions of egs. (24), ch. 3.
If one selects one of these solutions, the perturbation procedure

can be pursued: we shall, however, not go into this further here.
It suffices to have recognized that our algebraic method is able to
handle all degeneracies of finite multiplicity, i.e., that it can reduce

the problem to the solution of algebraic equations. If, for example,
each eigenvalue occurs twice, so that to each there belongs a vanishing
frequency wo(nm), the perturbation problem leads to a quadratic
equation:

WO — HO(m,n) — HD(m,n+ 1) B
— HOm +1,n) WO —HOn 4+ 1,0+ 1)|

This case obtains when two originally identical nondegenerate systems
(in which all frequencies in each of the respective systems are to be
different) are coupled through some force.

Further, the orthogonality relation

0 0 __
%xknx!:n - 1

has an interesting meaning in the case of degenerate systems. Because
of (23), this relation goes over into

.
Z i =1

From this it follows that, if m denotes any number in the series
n,n+1,...,n4+7—1, and 2 denotes any number outside this set, the
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sums
n+r—1
I PO mkpom),
whre1
X gO(mk)g O (mk)
m=n

are uniquely determined, even for degenerate systems, e.g., the
summations are invariant with respect to those transformations

= 0) ~ y ~ = 3 1 alt+~erathao = Yo ~
=TT £F £

p’, ¢ to arise from certain solutions p, ¢ in the case of degeneracy.
This result provides a mathematical representation of the so-called
spectroscopic stability, which has played an important part in the
more recent theories of fine-structure intensities (cf. ch. 4).

3. Continuous spectra

The simultaneous appearance of both continuous and line spectra as
solutions of the same equations of motion and the same commutation
relations seemed to us to represent a particularly significant feature

of the new theory. In spite of this close connection between the two
kinds of spectra, there nevertheless are characteristic distinctions,
both mathematically and physically, between continuous and discrete
spectra, corresponding to the difference between Fourier series and
Fourier integrals in classical theory; it therefore strikes us as desirable
to indicate the rough outlines of the treatment of continuous spectra
here. The mathematical theory of continuous spectra which occur
for infinite quadratic forms has, starting from the fundamental
investigations of Hilbert, explicitly been developed by Hellinger
(loc.cit.) for the case of bounded quadratic forms. If we here permit
ourselves to take over Hellinger’s results to the unbounded forms which
appear in our case, we feel ourselves to be justified by the fact that
Hellinger’s methods obviously conform exactly to the physical content
of the problem posed.

Let us first briefly examine the classical analogue to our problem,
namely aperiodic motion and its Fourier integral. Whereas in a Fourier
seriesa certain amplitude a(») always belongs to an oscillation exp (2nivt),
in the case of a Fourier integral one has a quantity of the form p(v)d¥
in place of a(»), where ¢(») might in a sense be conceived as an
amplitude-density per frequency interval dv. In a similar and physically
immediately obvious manner, one can always relate all quantities




15 ON QUANTUM MECHANICS II 359

such as intensity, polarization, etc. to a frequency interval dv between
y and v+dv, but never to a definite frequency itself. We shall have
to expect quite similar conditions to apply in quantum mechanics.
Instead of quantities ¢(kl) we shall have quantities of the form
g(k, W)dW or ¢(W, W')dWdW’, depending upon whether one or both
of the two indices lie in the continuous region. Indeed, in place of the
energy W itself, there will have to be a ‘total energy’ per interval
dW, since the probability for an atom to have an absolutely definite
~ energy W in the continuous region is zero. To elucidate these questions
we shall in the following briefly sketch Hellinger’'s mathematical
theory.
For infinite quadratic forms, the case may arise that the form
Y H(mn)xmx;,

mn

substitution. We may then assume, in analogy with the results for
bounded forms, that a representation with a continuous spectrum

exists,
3 H(mn)xmx, = E Waynya + / Wip)y(e)y*(¢)de, (26)

mn

in which the original variables are connected with new variables
yn, ¥(p) through an ‘orthogonal transformation’; one only has to
specify more clearly what is here understood by an orthogonal transfor-
mation.

If we again consider the linear equations (15), ch. 3,

Wxr — S H(kl)x; = 0, (27)
1)

the case under review in which (26), ch. 3, contains an integral com-
ponent will occur when there are not only discrete values W,, for
which these equations can be solved, but also a continuum of such
values comprising one or more ‘segments’ on the W-axis (continuous
spectrum). For any given point W of this continuum, there exists a
solution x;(W) (or several, which we for simplicity wish to exclude);
for two such W-values, W’ and W”, the equations

Wa(W') — T HE)m(W') =0,

(28)
W (W") — T H* (k) (W") = O
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obtain, from which, as above, we conclude that

’ ” ! 4

k
If one tries imposing the normalization condition

E lxx(W)|2 =1

on top of these orthogonality relations, one observes that the function
of two variables

zk] (W) xe(W")

becomes wildly irregular, if it exists at all. The above sum does not in
fact converge and therefore does not represent a function.

Accordingly, a different type of normalization is required. With
Hellinger, we set

- SUmmawp=ew). @0

k
The series on the left-hand side is in general convergent and repre-
sents a monotonous function (W), which apart from certain re-
strictions can be chosen arbitrarily, since the xx(W) are of course
determined only up to a factor which is independent of 2. We shall
later discuss the physical significance of this function ¢(W), by which
the solutions xx(W) are defined. Hellinger has termed ¢(W) the ‘basis
function’ and has shown that the orthogonality conditions can be
derived in the following form: If 4; and 43 be any two intervals of
the continuous spectrum and 4,3 the interval common to them both
(which may also be absent), then
S/ xu(W) AW’ [ x(W") dW" = [ de(W)
k 41 44 A1 (31)
= g(W®) — (WD),

where W), W) are the end-points of 4;3. Hence if there is no overlap
between the intervals 43, 49, a zero stands on the right-hand side.

If one conceives the intervals 4;, 42, 412 to be very small, one can
symbolically write

3 xx(W') AW’ - x(W") AW” = de(W). (32)

This relation prompts the suggestion that one operate generally with
the quantities xx(W)dW as ‘differential solutions’ of (27), ch. 3,
whereby one has to note that the respective equations are always t0
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be interpreted in the sense of (31), ch. 3. These differential solutions
are orthogonal in the usual way, but instead of being normalized to
unity, are normalized to the differential of the basis function ¢(W).

The totality of discrete values xxn, and of values xx(W) which are
discrete in one index and have a continuous distribution in the other,
comprises the elements of the ‘orthogonal’ matrix

S = (%kn, xx(W) dW),

icl ) ALl 1 ! as:

k— ’

(33)

n
é . . - . . * .
’ ! \ I ]
The orthogonality and normalization equations for the entire matrix
split into four different groups:

b kax}:n = Omn;
k

3 xknxp(W) dW = 0O; > xx(W) dW x5, = 0; (34)
k

k

3 2 (W) AW/ -x5(W") AW = dg.
k

We can also write the orthogonality relations for the columns, which

read
* x (W) dW x5 (W) dW
S Kentlt, + k(W) - 1(W) |
n v Q@
r dW
= X Xkn¥, + ra xk(W)x; (W) = ox, (35)

where the prime denotes differentiation, ¢'=dg/dW.
With the aid of this matrix, we have to transform the variables
Xx into new ones, vy, ¥(p) dp. We set:

yﬂ = z xlm'xk:
k

(36)
y(p) dp = %xk(W) dW - xg.
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A simple calculation then yields

nYnYn P)Y\@ = L
n ki
The principal-axes transformation has thereby been carried through,
Let us now investigate which representation of coordinate and
momentum matrices is obtained with the aid of this orthogonal
transformation, e.g., what is meant here by the equations

P (38)
q = Sq0S71,
or, generally, by
f(pq) = Sf(poqo)S—1. (39)
We find, for example, four types of elements for p:
= ?cm n
Kl
plm, W) AW = 3, 23,p0(kl) (W) AW,

p(W, n) AW = 5 (W) AW -pO(l)1n,
ki

PW', W) AW’ AW" = 3 x4(W') dW'pO(kl)x, (W) AW,
kl

In a similar manner, instead of the amplitudes p(mn), ‘amplitude
densities’ p(mW) dW (which refer to an interval dW) occur generally
in the case of a continuously variable index. This accords with our
previously declared expectation. It is, however, not necessary to take
just the energy as the continuously variable index. In place of the
energy, one could, for example, introduce the quantity ¢(W). Then
in place of p(mW) dW one would have p(me)(dW/dg) dp. Finally, in
the continuous case the energy W, is replaced by the quantity
W (@) de. In place of the energy of the individual atom, we get a sort
of total energy per interval dW. Thence dg essentially represents the
number of atoms having an energy which lies between W and W+dW,
or the a prior: probability that the energy of the atom lies between
W and W+4dW. We here most clearly observe the difference between
the cases with discrete stationary states on the one hand and those
with a continuous manifold of states on the other hand, and we
can see a simple connection between the problem of statistical weights
and the question of the normalization of the solution of (27), ch. 3. In
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the case of discrete states when there are no multiple eigenvalues, we
make the simple physical contention that each state should have the
statistical weight 1. This was ensured by the fact that we normalized
the xxn on the basis of the requirement

Z xknx;n = ],

k
In the case of continuous manifolds of states, it was not possible to
fix the a priori probabilities so simply; more detailed investigations
of the problem in question are necessary for their determination and
hence also for the evaluation of the function ¢. Hence the connection
between transition probabilities and the amplitudes might also
assume a somewhat more complicated aspect in the case of continuous
spectra than for line spectra.

The matrices of p, q or f(p, q) represented: by (40), ch. 3, and corre-

sponding form an for the general case be madeclear o

scheme:

The physical meaning of this scheme is self-evident.

There are four types of ‘transitions’ which to some extent furnish a
simple analogue to the ‘transitions’ postulated hitherto in the theory
of the hydrogen atom, viz. (1) from ellipse to ellipse; (2) from ellipse
to hyperbola; (3) from hyperbola to ellipse; (4) from hyperbola to
hyperbola.

One can still raise the objection against the formulae (38) and (40),
ch. 3, that manifestly in some instances the infinite sums on the right-
hand sides do not converge, and hence do not represent a function,
since of course in classical theory also, the representation of a function
f(p, q) by Fourier integrals is sometimes impossible, as for instance if
the respective functions f increase linearly with time at large times
(as is in general the case with coordinates). To this objection, one may,
however, rejoin that the observable effects of the atom (such as radia-
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tion, the force upon another atom, etc.) do not in general belong tq
this type of function, and thus that the appropriate sums of the same
type as the formulae (40), ch. 3, might indeed converge.

CHAPTER 4. PHYSICAL APPLICATIONS OF THE
THEORY

— L. Lawsof conservation of momentumand angular momentum;
intensity formulae and selection rules
By way of applying the general theory as established in the aforegoing
sections, we now derive the known features concerning ‘quantization’
of angular momentum and some associated principles.

We shall thereby at the same time become acquainted with some
chanical equations of motion. The previously-discussed perturbation
methods can, of course, be applied successfully only when a set of
particularly simple examples, which can be selected as unperturbed
systems Ho, has been integrated in some other way. Now, the quantum-
mechanical equations of motion coming from the decomposition of
matrix equations into components present the special difficulty that
— apart from the instance of the harmonic oscillator — infinitely many
unknowns occur in each of the separate equations. A technique
frequently employed in overcoming this difficulty in the following
and, as it seems, of wide applicability, consists of the following pro-
cedure: By analogy with classical theory, one first seeks integrals of
the equations of motion, i.e., functions A(p, q) which on the basis of
the equations of motion and the commutation rules are constant in
function of time and consequently become diagonal matrices in the
case of nondegenerate periodic systems. Now if ¢(p, q) be any function
whatsoever, the difference

can be evaluated with the help of the commutation rules; if A is 2
diagonal matrix, a system of equations results, each of which contains
only a finite number of unknowns, namely a single component of
the matrices @ and ¥ (and two diagonal terms of A) in each.

If in Cartesian coordinates, H=H'(p)+H"(q), which includes the
case of relativistic mechanics, then one can see immediately that the
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components of the angular momentum IR, viz.

13

<
8
Il

kz 1 (Pry9kz — qryPkz),

13
My = 3 (Pkz9kz — QkePka), (1)

k=1
13
M, = kZI (Pkz9ky — qrzPky)

become constant under the same general conditions as in classical
theory. This is because a sum,

M. = () + P(p),

ensues for the derivative of, say, M, with respect to time, and since
all the p commute with one another, as do all the q, the quantities

@, Y vanish under the same conditions as in classical theory.
The same remarks are to be applied to the linear momentum

113 1/3

= ), Pk; l.e., Pz = 2 Pkz, .- (2)
k=1 k=1

which likewise becomes constant. Thus the centre-of-mass theorem
holds just as in classical theory.

We immediately note here a formula which will be used later and
which can be derived from the commutation relations (3), ch. 2. We
find

MMy — MM, = Ez {(Pxy9kz — qryPrz) (P1z9iz — QizPiz)
k

— (Prz9kz — Qizbiz) (P1y9iz — Quybiz)}
= Ez {Pky‘?!x(q.tzplz — Piz9kz2)
k

+ qrypiz(Prz9iz — QIszz)},

h
=) % (Pr29ky — qraPry),
Le.,
MMy — MM, = M, (where & = h[2ni). (3)

Incidentally, one can directly see from this formula that the theorem
of conservation of angular momentum invariably holds for at most
One or alternatively for all three axes, as in classical theory.
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In the following we shall assume that on treating the problem with

which we are confronted by the methods developed in the preceding
chapter we are led to obtain discrete energy values (point spectrum),
If then M,=O0 for a nondegenerate system — this will for instance be
the case if forces which are symmetrical about the z-axis act upon the
atom — M, has to become a diagonal matrix: the separate diagonal
terms are to be regarded as the angular moments of the atom about
the z-axis for the individual states of the atom. For the investigation

otions o € electrons in this case, we fir a e
relation

QIzMz = qulz =0 (4)
follows from (1), ch. 4, and since M,(nm)=08ymM;n, this means that

quz(nm)(Mzn — Mezm) = O. ()

One sees that: For a quantum jump in which there 1s a change in the
angular momentum My, the ‘plane of vibration’ of the generated ‘spherical
wave' lies perpendicular to the z-axis.

Furthermore, one has

quzMz — MGz = — &quy, (6)
. QuuM: — Mxqyy = €qiz,
i.e.,
Quz(nm)(Mzn — Mem) = — eqiy(nm), @)
qry(mm)(Mzn — Mom) =  eqiz(nm).

Thus for jumps in which no change in M, occurs, the emstted light is
linearly polarized parallel to the z-axis.
Further, from (7), ch. 4, it follows that

{(Mzn — Mon)2 — (h2[472)}qun(nm) = 0; 9 =x,y. (8)

One finally concludes: For every quantum jump M., changes by O,
or by +h|2n. The light emitied in the latter case is circularly polarized,
as follows from (7), ch. 4.

In accordance with the above finding concerning the possible changes
in M,, the quantity M., can be represented in the form

h
Mep=——(m+C), m=.,-2-1012.. 9
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If there were states whose angular momentum did not fit into this
set, no transitions and no interactions whatsoever could occur between
these and the states depicted by (9), ch. 4. Equation (9), ch. 4, can be
taken as a motive for splitting » into two components, one of which
is the number #;, introduced in (9), ch. 4, whereas the other, #ns,
counts off the various » with the same n;. Our matrices then become
four-dimensional, and the results we found for the motions of electrons
may be summarized as:

Qiz(nm) = 6, . q1z(nm); (10)

Qiz(nm) = ‘51,|m—mn?1x(”m)’
qy(nm) = 61,im—m1|qu(”m)§

Qiz(n1, na; n1+1, ma) F igry(ni, ne; n1t1, mg) = 0. (107
Further, from (4) and (6), ch. 4, it follows that if we set
0 = q} = q + 95, + 95

(10')

then

- —M 2 0 (11}
l.ul'l’lz T z(.u —N \l l}

This relation means that ¢ is a diagonal matrix with respect to
the ‘quantum number’ #n;.

The relations (4) to (7), ch. 4 and (10), (11), ch. 4, also hold if in
place of the qiz, qiy, qiz We insert pyz, Piy, Piz Or alternatively Mz, My,
M.. Thus in particular we have:

Mz(”‘!-M) = al,lnx-—mﬂMz(nm); My(nm) = 61,im—m1| (12)
M y(n1, na; n14-1, ma) £ iMy(n1, na; n1t1, mg) = 0.

Further (cf. eq. (1), ch. 4), M2=M2=M24-M2+M? is a diagonal
matrix with respect to »;, since ’

M2M, — M,M2 = 0. (13)

M y(nm),

For a system in which all three angular momentum conservation
theorems apply, the constant components of IR certainly cannot
collectively be diagonal matrices, since otherwise the above consi-
derations for M, to be a diagonal matrix could be applied to each of
these components, which would lead to discrepancies. Hence such a
System is necessarily degenerate.

We now set out to consider a system H=Hy+ AH; ... of the following
type: All three angular momentum theorems arve to apply for A=0. For
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A0 the system is to be nondegenerate, the constancy of My 1s to remasn,
undisturbed. The energy Hy is to be independent of ny. The results we

shall obtain from this investigation of the case 450 can in part alsq
be carried over to the degenerate system Hp, namely insofar as they
are independent firstly of A and secondly of the distinguished direction z,

The assumed degeneracy of the system for A=0 is expressed by the
fact that Mz My, (d/d?)(M2) contain no terms of zeroth order in A
Thus

vo(nm) M ,(nm) = 0, nN==,9,
vo(nm)M2(nm) = 0.
Since Wy is independent of the quantum number #; introduced

earlier, whence vo(n1, ng; mi, nz)=0, whereas vg(n1, na; m1, ms) 70 is
invariably non-zero for ng#ms, it follows from (14), ch. 4, that

M) (nm) = b,,,,. M2 (nm),

(14)

(15)

M%(nm) = 6,,_,, M" (nm).

The square of the total momentum (M°)2 is a diagonal matrix in

element of the matrix M), M) reduces to a simple sum
S M(ning; kike) MY(kiks; mims)
kiks
= Onm, = My(ning; king) My (king; mins), (16}
k1
which contains only a finite number of summation terms because of
the finite number of possible #; at fixed na (the terms of

M =MI + M) + MIT > M2

do not depend on #;). In (3), ch. 4, applied to M), M), M), we can at
any given time sum the equations which belong to a given ng over
n1 and obtain,! for fixed #ns:

h
X My(ning; ming) = ¥ (n1 + C) By 0. (17)
On noting additionally that, by (12) and (16), ch. 4, the sum (17?.
ch. 4 vanishes for every single uninterrupted sequence of the n 1t
follows that at fixed ng the possible values of #1+C form an unbroken
series and lie symmetrically with respect to zero. Hence they must

*In I we already noted that in the case of a finite diagonal sum D(ab)
we always have D(ab) =D (ba).
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necessarily constitute either ¢nfeger or half-integer numbers, the latter
being numbers in the series ..., —%, —%, %, 3,.... If for the moment

M, about the z-axis we now introduce the notation usually used in
the literature, namely m(k/2x) in place of (n;+C)(k/2r), this result
accordingly shows that the selection rule m—(m—+1, m, m—1) applies
to m and that m is either ‘integer’ or ‘half-integer’.

Our result demonstrates further that exclusion of individual states,
such as was, for example, necessary in the past theory of the hydrogen

atom in order to prevent collisions between the electron and the
nucleus, has no place in the theory proposed here.

We now attempt to derive the selection principle for the ‘total
momentum quantum number’, as also the intensities for the Zeeman
effect, from our theory, proceeding from (5) and (8), ch. 4.

Let us recall the derivation of these selection rules in classical
theory: There it is only necessary to introduce a coordinate system

whose z-axis coincides with the direction of the total angular momen-
tum; in the new coordinates the same results can be derived for I
as were previously obtained for M,. Let us accordingly set up such a

coordinate system «’, y’, z’. The relation
M, M,y M,
M TV T

2 =X

has to hold anyway in order that the 2’-axis lie in the direction of the
total momentum. (In the following, we shall again drop the index 0
for simplicity in all momenta and coordinates: the calculations
throughout refer to the limiting case A=0). Further, we can so arrange
it that the x'-axis lies in the x, y-plane. Everything is thereby fixed,
and we have
M, M,
VL) (ML 4 )
. a(M2 4 MY) — xM,M, — yM,M,
a M~/ (M + M}) |

Now let us try a similar procedure in quantum mechanics. We intro-
duce the three quantities

Z; = QuaMz + quMy + qiM;, ,

X1 = quuMz — Myqiz, (18)

Y: = MzqiMz + MyqiMy — quzM Mz — MyMqyy.

x =%




370 M BORN, W. HEISENBERG AND P. JORDAN 15

In order to derive the desired selection rules, we still need some
commutation relations, which result from (4) and (6), ch. 4 (e=A/2xi):

YizM?2 — M2q;; = 2¢(qiMy — Mzquy) (19)

and the equations for ¢q;y, g;; which ensue from this on cyclic permu-
tation. It then follows! from (3), (4), (6) and (19), ch. 4, that

X},’Mz — MZX; — "—28Y3,
YiM2 — M2Y; = g(X;M2 4+ M2X)), (20)

Zm2 — M2Z; = 0,

These equations are fully analogous to the relations (4) and (6), ch. 4,
which determine the selection rules for M,; since we shall later show
that the qiz, qiy, qiz really can be expressed as linear functions of the
X1, V1, Z;, with coefficients which for A=0 are constant with time, we can
determine the selection rules for M directly from (20), ch. 4. AsM2isa

1 The first and third formulae in eq. (20), ch. 4, result from a quite simple
calculation. The second of egs. (20), ch. 4, can be derived in the following way:
From (18), ch. 4,

Yi = Mzqi:Mz + MyqiyMy — qizMMz — MyM.qyy,
and because of (6), ch. 4,
Yi = qe(M} + MZ) — equMs + eMyqus + €2qu;
— QuzMMz — MyM;qy
= qiz(M?% — M2) — eX; + £2qi; — quzM Mz — MyM.qyy.

In the evaluation of Y;M2—-M2Y; we now have to note that M2 commutes with
Mz, My, M.. Hence for the second part of the formula for Y; written above, it
follows that (cf. (19), ch. 4)

(quzMMz + Myquw)Mz — M2(qizM Mz + MyM.q1y)
= 2e(quMyM:Mz — M;qiyM Mz + MyM.qizM; — MyM Mzqi2).

On noting that (eq. (19), ch. 4) qizM2—M2q;,=2¢X;, it follows from the com-
mutation relations that

quzMyMMz — MyM:M2q1; = e(MyM.q1y — q1zM-M3),
MM qizM, — MleyMzMx == = X:-ME — e(MquuMy — qzMM;),
and finally we obtain the desired formula (20), ch. 4:
YiMZ — M2Y; = 2eXi(M2 — M2 + £2) — e(XiM2 — M2X;) + 2eX;M2
— 2e2(qizMM; — quzM:Mz + MyM:qy — MMyquy)
= 2eXi(M2 — M2 + £2) — g(X;M2 — M2X;) + 2eXiM2 — 263X
= g(XiM2 4 M2X;).
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diagonal matrix, it follows from (20), ch. 4, that

X‘(”ﬁz)(ﬂdm - iifi,‘;) = — 2¢} ‘(””z)'
Yi(nm) (M5, — M3) = eXo(nm) (M7, + M7}), (21)
Zy(nm)(M2, — M?2) = O,

The last of the eqgs. (21), ch. 4, states that no vibrations take place

in Z which could entail a change in M2. It follows from the first two
equations that

h2
Xy(nm) { (M2, — M2)? — ot (M2, + M2 =0. (22)

If we now set M2 =(h/2n)%(aZ,—1), where ap denotes any function
of the quantum numbers, eq. (22), ch. 4 yields

X o g )2 22— 1) =0

Zx ] 3

or, if X;(nm) does not vanish,

P | L 1 {
Un — T"Wm IT_ 1. 'I\

There is no sacrifice of generality in taking a, as positive and =}

throughout. The a, thus constitute a series of the form C, 14C,
2+4-C,... where C denotes a constant which is =3. Setting a,=7+3%

yields
M? = q(j + 1)(h[27)?, (24)

and the following selection rule holds for ;:
j+ 1
] —=>11
§ =1
This result is formally reminiscent of the values of M2 which enter
the Landé g-formula.

If for M, we now again introduce the designation m(%/2x), we find
from (12), ch. 4, and the relations

M2 = M7 + M + M;
and

(Mg + iMy) (Mg — iMy) = M2 + M2 — ieM, = M2 — M2 — ieM,
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that

M7, m—17,m)y + iM (G, m—1;7, m)
=—"\/( 7+ 1) — m(m — 1)),
M5, m; 1, m—1) — iMy(j, m; ], m—1) ()

h
=—4/(j(j + 1) —m(m — 1)).
27

For a given value of 7, the maximum value mpyax of m is characterized
by the absence of the jumps M max —>Mmax—+1, i.€., the right-hand side
of (24), ch. 4, for example vanishes for such jumps. This gives

] = Mmax-.

Hence | also can be ‘integer’ or ‘half-integer’ only.
The calculation of the intensity formulae for the Zeeman effect, e.g.,
the dependence of q;z, qiy, 91z upon m, now appears very simple. From

(18), ch. 4, we derive the relations

qiz = (ZiMz + eX; + Vi )M2,
Qiz + iqy = [Z1 — quz(M; + 1e) + iX](Mz — iMy)-1, (26)
Quz — Wiy = [Z; — quz(M; — 1e) — 1X;](Mz + iMy)~1

by solving for qiz, qiy, qiz. These equations also furnish the previously
postponed proof that the qiz, qiy, qiz can be represented as linear
functions of the X;, Y;, Z; with coefficients which for A=0 are constant
with time. At the same time, eqs. (26) ch. 4, include the desired
intensity formulae. This can be seen by first noting that the X;, Y;, Z;
are diagonal matrices with respect to m, since

szz — szz == 0,
YiM; — MY, =0, (27)
ZzMz — MZZ; = 0.

Our problem now resolves itself into two parts, namely discussion of in-
tensities for jumps j— and j—>j—1 (the jumps j—j+1 then do not
provide anything new). We first consider the transitions j—j. For
these, equation (20), ch. 4 shows that only terms in Z; are present.
We shall call these terms Z;(f, m). Then, on setting M,=m(k/2n) and
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taking note of (24), ch. 4, eqs. (26), ch. 4 yield:

; 27 : m
qiz(], m) = 7 Zy(], m) W,
(qiz + 1q19)(j, m — 157, m)
o 17+ 1) —mm—1)

(q1z — iquy) (g, m; 7, m — 1)

2n , 7+ 1) —mim — 1
_ 2 g D L)
h i+ 1)
Finally, to establish the dependence of the quantity Z;(;, ) upon
m, we might use the relation

Mzqiy — Mz = €qiz; (29)

it demonstrates in our case that Z;(j, m) does not depend on m. For

the transitions j —j we thus obtain:

qi(7, M) © (Quzt+iquy)(j, m—13 7, m) * (Qrz—iqu)(j, m; j, m—1)
=m: V{jj+1) —mm—1)} : V{([+1) — mim—1)}.

We treat the jumps j—j—1 analogously. For these, according to (21),
ch. 4, we have X,(j, m; j—1, m)=(¢e[7)Yi(7, m; j—1, m). If, using (26),
ch. 4, we express the intensities in terms of X(j, m;j—1, m), we
obtain:

(30)

) . . 2n : : 1
qiz(j, m; 7 — 1, m) = ITXz(i,m:y — l,m)?

(q1z + iquy)(j, m — 157 — 1, m)

B e i 1o — V(i—m)
=i Xl m—1if = Lm—1)

(31)

(q1z — iquy)(f, m; 7 — 1, m — 1)

V(i+m—1)
V(i —m)

In conclusion, to establish the dependence of the quantity X;(j, m;

j—1, m) upon m, we again use the relation (29), ch. 4, which by way

2n
= — iTxc(f;mI?.‘_ 1, m)
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of a simple calculation here yields:

We thus find that
qiz(7, m; 1 —1, m) : (Q1z + iguy)(j, m—1;7—1, m)

Hqrz—iquy) (7, m; 1 —1, m—1)=1/(12—m2) : 4/ ((j—m)(j—m+1)) (33)
=V (G A+ m@G 4+ m—1)).

tha | ' ) -
qiz(7, m; 1+1, m) © (quiz + igqu)(j, m; 1+1, m 4 1)
Gz — iqu)(f, m1; 741, m) = /((7 + 1)2 — m?) (34)

V(G +m 20 +m+ 1) s = V(G —m A+ 1) —m).
The formulae (30), (33), (34), ch. 4 agree with the intensity formulae

derived from correspondence considerations.l
We wish just to draw attention to a simple deduction from (21),
ch. 4: The jumps A7=0 occur only in the ‘Z;-direction’. If we consider

the motion of a single electron about a nucleus, that is, examine the
hydrogen atom, it follows directly from (1), ch. 4, that'Z vanishes.
Hence in this case the jumps 47=0 never take place.

2. The Zeeman effect

If one carries the Lorentz force (¢/c)[v9] exerted by a magnetic field
upon an electron over into quantum mechanics, it seems obvious at
first that the normal Zeeman Effect ensues for atoms, since under
exactly the same assumptions as are introduced to derive Larmor’s
Theorem classically for the nuclear atom — namely, neglect of terms
with 2 — one can derive this theorem here. There is, nevertheless, a
certain difference between classical theory and quantum mechanics
insofar as the justification for dropping terms in $?2 is concerned. The
neglect of 2 in classical theory is certainly permissible for orbits
of small dimensions and certainly impermissible for very large orbits
or indeed, hyperbolic orbits. In quantum mechanics all these orbits,
be they the innermost or the outermost, are so closely connected with
one another as a result of the kinematics specific to quantum me-

1 S. Goudsmit and R. de L. Kronig, Naturwiss. 13 (1925) 90; H. Hénl, Zs. f.
Phys. 32 (1925) 340.
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chanics, that indication of the mneglect of the quantity 2 is not
immediately apparent. The probabilities of transitions to free electrons
are indeed considerable, even from the ground state.

For an oscillator, we are thus sure of the normal Zeeman effect; on
the other hand for the nuclear atom it does not seem to be entirely
excluded that the intimate connection between innermost and outer-
most orbits leads to findings which differ somewhat from the normal
Zeeman effect. However, we must emphasize that a whole set of

that the hypothesis of Uhlenbeck and Goudsmit might later provide
a quantitative description of the above-mentioned phenomena.

3. Coupled harmonic resonators. Statistics of wave fields

f 2
H=4% % 4.0, (35)

k=1 Mg

with a quadratic form Q(q) of the coordinates (with numerical coef-
ficients) represents the simplest conceivable system having several
degrees of freedom. As was established in ch. 2 § 1, the commutation
rules remain invariant on simultaneous orthogonal transformation of
coordinates and momenta. Therefore, as in classical theory, the system
(35), ch. 4, can be transformed into a system of uncoupled oscillators.
In particular, the vibrations of a crystal lattice can be analyzed into
eigenvibrations, just as in classical theory. Each individual eigen-
vibration is to be treated as a simple linear oscillator according to the
manner discussed previously in detail, and the synthesis of the various
uncoupled oscillators to a single system is to be undertaken in the way
explained in ch. 2 § 1. The same will also apply if we go over to the
limiting case of a system with infinitely many degrees of freedom
and for instance consider the vibrations of an elastic body idealized
to a continuum or finally of an electromagnetic cavity.

In the previous quantum theory also, vibrations of an electro-
magnetic cavity constituted the subject of many detailed investi-
gations, since on the one hand the problem of the harmonic oscillator
represents just about the simplest problem which can be treated with
the methods used hitherto, and on the other hand the familiar result
that the energy of an eigenvibration should be an integer multiple
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of /w exhibits a formal similarity to the fundamental assumptions of
the theory of light quanta, so that one might hence expect to gain
insight into the nature of light quanta through the consideration of
black-body radiation. To be sure, it is clear from the very outset that
attacking the problem of light quanta from the above standpoint
cannot by any means account for the most important aspect of this
problem, namely the phenomenon of coupling of distant atoms, for
this problem does not enter at all into the formulation of our questions
the eigenvibrations of a cavity and the light quanta postulated
formerly can nonetheless be drawn that every statistics of cavity
eigenvibrations corresponds to a definite statistics of light quanta,
and conversely.

Debyel has attempted to arrive at such a form of statistics, starting
from a distribution of individual light quanta among the eigenvi-
brations of the cavity. In this manner he was able to derive Planck’s
formula. However such a mixture of theoretical wave and light-
quantum considerations would seem to us hardly to accord with the
real nature of the problem. Rather, we believe it to be consistent to
separate the theoretical wave-aspect of the problem completely from
the theory of light quanta, that is to say, to treat the wave-statistics
of black-body radiation throughout by the more general statistical
rules applying e.g., to the quantum theory of atomic systems. The
statistics applicable to light quanta is then, as we shall show, Bose
statistics.?2 This finding hardly seems unnatural, since this statistics
has nothing to do with the hypothesis of independent light-corpuscles,
but rather is to be regarded as carried over from the statistics of
eigenvibrations — which just shows that the assumption of statistically
independent light-corpuscles would not meet the case correctly.

However, in each such treatment of cavity radiation by quantum
theory hitherto, one encountered the fundamental difficulty that
although it led to Planck’s law of radiation, it did not yield the correct
mean square deviation of energy in an element of volume. One thus
finds that a consistent treatment of the natural vibrations of a me-

1 P. Debye, Ann. d. Phys. 33 (1910) 1427; cf. also P. Ehrenfest, Phys. Zs. 7
(1906) 528.
2 S. N. Bose, Zs. f. Phys. 26 (1924) 178.
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chanical system or an electromagnetic cavity in accordance with past
theory leads to most serious contradictions. This caused us to hope
that the modified kinematics which forms an inherent feature of the
theory proposed here would yield the correct value for the interference
fluctuations, thus precluding the above contradictions and opening the
possibility of setting up a consistent system of statistics for black-body
radiation.

The states of the system of oscillators can be characterized by
‘quantum numbers” %1, 73, #3,... of the individual oscillators, so that
apart from an additive constant the energies of the individual states
are given by

En = h Y vgng. (36)
k

The additive constant, the so-called zero-point emergy is

C=1%i Ek Vi (36"

(in particular, for the limiting case of infinitely many degrees of
—freedom, it would be infinitely large). From now on, let us simply calt ——
the quantity £, in (36), ch. 4, the thermal energy. In accordance with
what was stated in Part I, the same statistical weight is to be attached
to each of the states of the system characterized by a certain set of
values 7j, ng, #3,.... The consequences of this can immediately be
perceived on the basis of the following remark: If waves are propagated
with a phase velocity v in an s-dimensional isotropic part of space
V=Is the number of eigenvibrations for the frequency range dv is
equal to the number of ‘cells’ for dv (in the Bose-Einstein sense), and
this in fact holds for arbitrary s, hence e.g. also for vibrating membranes
or strings. This follows from the fact that, if we omit consideration of
polarization properties, etc., the number of eigenvibrations for the
range dv is furnished by the solution of the problem of determining
the number of ways in which one can choose a set of positive integers

ma,... ms such that the » determined by the relation

2
—v-vz\/(mf—l—...+m§)

falls within the interval dv. If K(a) be the volume of an s-dimensional
sphere of radius a, there are (V[v%)K(v) eigenvibrations which have a
frequency less than ». On the other hand, the number of cells for the
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range dv can be determined as follows: The momentum components
$1,..., s of the quantum satisfy the equation

hfo = v/ ($2 + ... + p%),

and the size of the cells is 4% in the 2s-dimensional phase space. One
can see from this that the number of cells belonging to a frequency
lower than » is also equal to (V/[v8)K,(»).

Hence, as mentioned above, one can effect a one-to-one corre-
spondence of cells to eigenvibrations such that the individual pairs
always belong the same d». This correspondence can, incidentally,
be so carried out that the directions of an eigenvibration and those
of the light quanta in the respective cell fall within the same infini-
tesimal angular range. From (36), ch. 4, the quantum number of an
oscillator is then to be set equal to the number of quanta in the ap-
ated statistics of natural vibrations and conversely. It can be seen
that the statement made above concerning the weighting of the
states of the system of oscillators goes directly over into the basic
postulate of Bose-Einstein statistics because of this association. The
equally probable complexions are defined through a declaration of
the number of quanta sitting in each cell.l

In Debye statistics, the number of oscillators involving » quanta
is (except for a factor which depends on » only) equal to

1 e~ r(w/kT) (37)

(4

and Planck’s law arises from

o8 1
—r(hv/kTY __

'Ele ’ = RT _

It is unsatisfactory that eq. (37), ch. 4, holds only for »>0 and does

not also give the number of oscillators involving no quanta. From

the new point of view, we have to replace (37), ch. 4, according to

1 A. Einstein, Sitzungsber. d. Preuss. Akad. d. Wiss. (1925) p. 3. Our consider-
ations naturally cannot yield any fresh viewpoint for the valuation of Einstein’s
hypothesis that this form of statistics is also applicable to an ideal gas.
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Bose,1 b
y (1 . e_h”kT) e—r(hv;’kT)’ (38)

which (to use the terminology of the theory of light quanta) gives the
number of ‘7-fold occupied cells’, and Planck’s formula results from

1

oo

kT —r(he[ET) __
> r(l —e ) e = T ]
r=0 €

The light-quanta statistics corresponding to Debye’s vibration sta-
tistics is represented by the theory developed by Wolfke2 and Bothe.3
To be sure, these authors do not speak of r-fold occupied cells, but
designate (37), ch. 4, as the number of ‘r-quantal light-quanta mole-
cules’.

As is known, the above-mentioned shortcomings of classical wave
theory become evident in the study of energy deviations in the
volume V and a very large volume such that waves having frequencies
which lie within a small range » to »4dv can pass unhindered from
one to the other, whereas for all other waves the volumes remain
detached, and if E be the energy of the waves with frequency » in V,

then according to Einstein the mean square deviation 42=(E —£)2
can be calculated by an inversion of the Boltzmann Principle. If
2y dv be the number of eigenvibrations (cells) in the range d» per unit
volume, so that

_ 2l

E= V. (©9)
then it follows that

— _  E2

42 = wE + - (40)

If, however, one calculates the energy deviations from interferences
in the wave field, classical theory yields only the second summation

1 This expression naturally has to be assumed for example also in the case of
elastic waves in a continuum, which necessitates a certain modification to
considerations by Schrédinger (Phys. Zs. 25 (1924) 89) concerning the thermal
equilibrium between light- and sound-beams. This modification can easily be
carried out in analogy with the probability theorem for the Compton effect
on assuming Einstein’s gas theory to be valid, as has earlier been pointed out
(P. Jordan, Zs. f. Phys. 33 (1925) 649).

2 M. Wolfke, Phys. Zs. 22 (1921) 375.

8 W. Bothe, Zs. f. Phys. 20 (1923) 145; 23 (1924) 214.
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term in (40), ch. 4, as has explicitly been shown by Lorentz.l This
discrepancy naturally also exists quite generally for such waves as

those in a crystal lattice or in an elastic continuum. According to
Ehrenfest,? its origins are to be sought in the fact that in the Einstein
treatment, additivity of the entropies of V and of the large volume was
assumed. However, this additivity of entropies applies, according to
the classical theory of natural vibrations, only in the region of validity
of the Raylelgh ]eans Law. Premsely the nonex1stence of statistical

a result of the theory of cavity radiation to date that one is obliged
to conclude that this theory breaks down even in the simple problem
of the harmonic oscillator. .

We now calculate the mean square deviation 42 from the inter-
ferences using quantum mechanics. To avoid calculational compli-
cations which have no bearing upon the nature of the case, we base

ourselves on the simplest conceivable case, namely a vibrating string
fastened at its ends. Incidentally, all essential points of the calculation
can immediately be taken over in more general instances. We first

cite the classical approach.
Let the length of the string be / and its lateral displacement be
u(x, ¢). On introducing the Fourier coefficients gx(f) as given by

w(x, §) = él aalt) sin k>, (41)

or
l

gi(t) = %j u(%, 1) sin k fl'ixdx (41")
0

as coordinates, the energy of the string goes over into a sum of squares.
Namely, for suitable choice of units,

H = ;f{ug -+ (—g:—)z] dx = —i;Eol {ék(t)z + (k“?)z ?k(t)z}- (42)

0

1 H. A. Lorentz, Les Théories Statistiques en Thermodynamique (Leipzig,
1916), p. 59.

2 P. Ehrenfest, Lecture in the Go6ttingen seminar on the Structure of Matter,
Summer 1925. The contents of this lecture were of great assistance to our
present considerations. Meanwhile published in Zs. f. Phys. 34 (1925) 362.
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More generally, for the energy E in a segment (0, a) of the string, we
obtain

: f < b St x sin & 7 x
EE— sin] — x Sin & —
> L2 919k ] ] ]
0

T

2
+ g1qrIk (%) cos | % cos k f; x¢dx.  (43)

If in (43), ch. 4, we take only the terms with j==%, we find (under the
explicit assumption that all wavelengths which come into consi-
deration are small with respect to a) just the value (¢//)H. From this

one sees: The difference
A=E —E,

wherein the bar represents an average over the phases @ in

4
g = Ak COS (a)kt -+ }Pk)i wr = k —-l—, (44)
can be derived from , ch. 4,
have j=k. This phase average is identical with the time average.
On carrying out the integration, one then finds

1 = [ . . wAE
Ad=— ¥ 1§9eKsk + 7R919x (r) Ki 1, (45)
4 k=1 !
P4k
with
sin (7—k)i;~ sin (7+k)—3;—
Bp— e -
-0 G+8 T
__ sin (wj — wg) a sin (w; + wg) a
o wj — Wk w;j + wg
(457)
7T 7t
sm(]—k)—l— sin (7 + )_Z_
K;k - . 7 ) 7T
(1 — k) T (7 + &) T

sin (w; — wk) @

wj — Wk
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In consideration of later quantum-mechanical calculations, we write

|] i . !u '2 ]o oI] Il .

A2 = (A1 + A2)2 = A% + A% + Mdz + A2, (46)
with
1 co [=.+]
A} + 43 =— E Z 419G GnK 16K 1
f?ék ?ﬁx
n 4 ' ! ’
1 ¢ Tl * i p
1 & o fm\2 N
My + Aoy = — T X |\ ) {1R99xdGxK K
16 4 kee1 asessr N §
1#k (B

+ wgiGrq g KK, }. (46"

| o _
g = —8_ E_ {999kK72k+72k2(l) %Qszi}- (47)

b‘I
[ =]
%I

A2 =A% 4

If we now let the string’s length / become very large, the wy get ever
closer together, according to (44), ch. 4, so that the sum (47), ch. 4,
goes over into an integral:

42 = A

b=t D

4
15 =5 _” dooy dwg — [q,qufkﬂzkz(l)q,qu 9}
(47')
Finally, we also assume the ‘volume’ a to become very large and
employ the relation
Q!
Him _1 sin2 we

a0 @ w?
-0

f(®) do = #f(0) for Q,2°>0. (48)

We then ses that only the first sum terms (sin (wj—wg)a)/(wj—wk)
in (45), ch. 4, provide an appreciable contribution, and we find for
(47'), ch. 4, .

m=2 [ aot@® + @7Be. (49)
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On the other hand, by (42), ch. 4, the mean energy in the volume a
becomes equal to

E=2t [ do @+ oigt) = f dofFE + 0%l (50
0

Therein we have
=32

qm = wzaﬁ’ (51)

a relation which, as we would recall, remains valid in quantum theory
too, according to ch. 1. In order to obtain the quantities 42, E em-
ployed in (39), (40), ch. 4, we have merely to extract those parts
referring to dv=dw/2= from (49), (50), ch. 4, and to divide these by
dv. With v=a we then obtain

oo

E2
= 52

We see from (44), ch. 4, that in our case 2z,=2, since

dwk e At di’k == —3;— dk.
Thence (52), ch. 4, in fact gives precisely the second term in (40),
ch. 4.

On going over to quantum mechanics, we have to regard (41, (41'),
(42), (43), ch. 4, as matrix equations for u, H, q, E. The quantity x,
however, remains a number, since if in place of the continuous string
we consider an elastic series of points, x would denote the number
(multiplied by the lattice constant) of any given point.

The matrix qx has 2f dimensions if f be the number of eigenvibrations,
1.e., infinitely many in the case of an elastic string. Each of the com-
ponents gr(nm) of qx vanishes except for those with

ng — my =0 for i # R,

ng — myp = 4+ 1. (53)

The phase average of a matrix is that diagonal matrix which coincides
with the diagonal of the respective matrix. From (53), ch. 4, in part
similar conclusions can be drawn to those derivable from (44), ch. 4.
The considerations which formerly led to (46), (46'), (46"), ch. 4, remain
valid in quantum theory. The formulae (47), (47’), ch. 4 with matrices
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qx also hold for the diagonal matrix A%+ A2 and finally, according to

frequency » as 42, we find
E*2
2v

The quantity E* in (52'), ch. 4, is, by (49), (50), (51), ch. 4, no longer
the mean thermal energy, but rather the sum of this and the zero-poins

A7 + A% = (52')

energy: from the elementary oscillator formulae, we have

E’zhv-V—I—E,

. _ E?
BT+ 25 =y V + B + —, (54)

since for dv the zero-point energy becomes equal to

2 ey — eV b,
I 2

We now still have to consider 4;42+ A424;. In treating this quantity

in just the same way as 47+ A2 we obtain, in accordance with (49),
ch. 4, the expression:

al? : ;
A4, + 454, = '—8—; fdw-wz{(qwqu + (quw)z}-
0

However, since the quantity 3/ is, from (42), ch. 4, to be regarded as
the ‘mass’ of the resonators, the commutation rules give us

1 2 h h

—q;q5(nn) = q;q;(nn) = 2 T o

Hence the part A1A9+A24; of 4142+ A4, which belongs to dv is,
after division by dv, equal to

M4z + A1 = —L(w)2V,
and, with (54), ch. 4, we have in fact
E2

Zl_zzkE ’
g +z,,V

(55)

which agrees with (40), ch. 4.
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If one bears in mind that the question considered here is actually
somewhat remote from the problems whose investigation led to the
growth of quantum mechanics, the result (55), ch. 4, can be regarded
as particularly encouraging for the further development of the theory.

From Ehrenfest’s finding mentioned above, one could save oneself
calculation of energy deviations involving interference considerations
and at the same time acquire the assurance that also for other similar
problems no contradictions are possible — if the additivity of the

~— entropies of volume elements could directly be proved in the quantum ——
mechanics of wave fields. Our above findings lead us to expect this
additivity to hold generally.

The reasons leading to the appearance in (55), ch. 4, of a term which
is not provided by the classical theory are obviously closely connected
with the reasons for occurrence of a zero-point energy. The basic
difference between the theory proposed here and that used hitherto
in both instances lies in the characteristic kinematics and not in a
disparity of the mechanical laws. One could indeed perceive one of
the most evident examples of the difference between quantum-
theoretical kinematics and that existing hitherto on examining the
formula (55), ch. 4, which actually involves no mechanical principles
whatsoever.

If the quantum mechanics proposed here should prove to be correct
even in its essential features, we might quite generally designate the
following as constituting the most important advance of this as
against the past theory: that in our theory, kinematics and mechanics
have again been brought into as close a relationship as that prevailing
in classical theory, and that the new fundamental viewpoints, stem-
ming as they do from the basic postulates of quantum theory for the
mechanical concepts together with the concepts of space and time,
find adequate expression in kinematics just as in mechanics and in the
connection between kinematics and mechanics.




