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The Compton effect according to Schrodinger’s theor

By W. GORDON in Berlin
(Received on 29 September 1926)

Translated by D. H. Delphenich

The frequencies and intensities that are radiated byCtrapton effect are calculated according to
Schrddinger’s theory. The quantum-mechanical quantitiedlateened from the classical quantities as
geometric means from the initial and final states efgitocess.

1. Construction of the differential equation for ¢¢. Heisenberg and Schrédinger
have given methods for the determination of quantum frezjee and intensities. The
Compton effect was already calculated by Difaasing the Heisenberg method. Here,
the same problem shall be treated by the Schréodingeiothethhe Schrodinger process
has the advantage that it serves as a useful mathahiatol. It is based upon the
determination of a quantity for an isolated electron that is a function of @ertesian
space coordinates, Xz, X3 and timet. Schrodinger has presented two rules for arriving at
linear, second-order, partial differential equations tffatmust satisfy. Both have a
certain relationship to the classical prescription by Wwhioe obtains the Hamilton-
Jacobi differential equation for the action functddh One substitutes the derivatives of
W with respect to the coordinates for the correspondimgulsesps;, pz2, ps and the
derivative with respect to time fd€ in the relationf(x, t, p, E) = O that defines.
According to one of Schrédinger’s rulés instead of the derivatives, one replaces the
derivatives with their symbol multiplied by271 and applies the resulting differential
operator to¢ (in which symmetry assumptions must be made in ordeavtmd
indeterminacy). The classical quantum prescriptions attew.

ow oE h o h o
= —, E=-—:; = E=————, 1
o, o’ T moax 27 ot )

when one introduces the imaginary quantities:

X4 =ict, ps=— (2)

in the symmetric form:

) P. A. M. Dirac, Proc. Roy. So:11(1926), 405.
%) E. Schrédinger, Ann. d. Phyg9 (1926), 734.
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Pa = a_W Pa = Li (1a)
T ox, " 2miox,
in which here, as also in what followkssmeans 1, 2, 3, am@means 1, 2, 3, 4.
In relativistic mechanics, the defining equationthe kinetic energy reads:
EZ
Zp,f—?+mzczzo. (3)
(m = electron masg = velocity of light), or, from (2):

> pi+n’c =0. (3a)

Now, put the electron in an electromagnetic fieldth the vector potential
componentsP,;, ®,, ®3;, and the scalar potentid,, between which there exists the
relation:

zacbk +E& =0 (4)
ox, C 0% ’

and from which, the electric and magnetic fieleesgths can be calculated according to
the formulas:

Ek:_adbo_}zacbk, leadbs_&, 5)
ox, Cc~— ot 0X, 0%
and cyclic permutations. If we introduce:
@4 =Py (6)
then (4) and (5), with the use of;J2assume the form:
0P
=0, 4da
> ™ (4)
E =i 9% 0% | Hy = 9%s 0, (5a)
0%, 0x, 0%, 0%

These formulas show thdt, is determined up to an additive expression offone of /
0°f
ox2

a

dt, wheref satisfies the wave equation —-= 0.
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If a field is present then one clarifies that enenggans kinetic energy plus field
energyed, (c = electron charge), and then, on the grounds of invariampellse means
kinetic impulse plus “field impulse&/c ®¢. (3) and (3a) become:

Y[ p-2o, ] E=PLmic= 3,0, | enidz0. ()

c

From (1a), the Hamilton-Jacobi (Schrodinger, resp.g#fitial equation then becomes:

0X C

{z[%axi_z J +mzcz}¢ o

respectively, or, after carrying out the square and niyitip by — 47 / h? :

Z(M ~Zo j +P =0, )

or

0%y Ani oy 4r(e 2 o 22), A
Zaxf, hZCD o ﬁ( > o? +mcj¢/—0, (9)

the first indeterminacy that is present — viz., whethse ehould writeZdDaZ—w or

o(®
Z(aw)

0Xx

a

—is lifted, on the grounds of (4a). An increas@inby of / dx, corresponds

2rie

to an increase iV by e/c f and a multiplication ofyby e " © .
The differential equation (9), together with theeofor the complex conjugate
function ¢, can be obtained from the variation of the integra

J:J'Hd>gd>gd>§d>4<,

0w g 2re( 0y 0p z (10)
_zaxaaxa+ h cz(lpc?)g, wc')),gj i (62“(‘) +mcj

when one treatg/ and ¢ as independent functions whose variations vanishithe

boundary of the integration domain. This yield® theneralization of the other
Schrédinger rulé): One Hermitizes the Hamilton-Jacobi equation (8):

Y E. Schrédinger, Ann. d. Phy#9 (1926), 361.
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[M__e j[a_vv__e j+mzc2:o,
0ox, C 0x, ¢C

and makes the substitutid® = h / 273 log ¢ in it, with which, after multiplying by # /
h? @@ , the left-hand side goes to the expressioim (10). However, instead of setting

H = 0, one sets the variation of the integril dx dx dxs dx; equal to zero. In the limit
h =0,W becomes real and (9) goes to (8).

If the potentials are time-independent then one caagreement with (1), make the
Ansatz:

27 g,

Yy=ue " (11

with time-independent. (9) and (10) then become:

u 4me ou 4r (E-ed))’ L, ,) _ _
i q)ka (62 B +m cjuu—O, (9a)
J:.[deld)gd)gd)‘,g
ou du 2me _oYy oy
=N =420 = —u—= 1
ox ox | CZ(UM ”a&jqjk (102)
( S ®F - (E &P,)° = 0 4m cj

In the case of classical mechanics, one must reflasith E + mé, and go to the
limit ¢ = oo; in this, e/c ®y then remains untouched, since thikere arises from the fact
thate is thought of as measured in electromagnetic unitshisnrsense, one must replace
d /ot withd /ot — 27i / hmc in (9) and (10) andE — edg)? / ¢ — n’c? with 2m(E — ¢ ®o)
in (9a) and (10a). Fobi = 0, the last two equations then take on the fornhefanes
that Schrédinger publishedl

2. Determination of the radiation from (. Classically, one computes the radiation
with the help of the motion of the electron. Stgrtfrom a complete integral of (8) with
the three constants,, one obtains the motion in the state that is definedhege
constants by means of the formula:

— =0k, (12)

) E. Schrédinger, Ann. d. Physc. cit.and79 (1926), 489.
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where thedk are three more constants. When (12) is solvedydésghe coordinates as
functions of time.

In quantum theory, one cannot speak of the motion iata,stince all the motions are
coupled with each other. The possible radiations @&rephtially-distributed currents and
charges of the one system, which are derived oimthe following way: If we multiply
(9) by ¢ and the complex conjugate equation that is validzZfoby ¢ and subtract both

equations from each other then we obtain, while obse(4iag

0s
z =0, 13
> o (13)
with
(.0 0 4m e
so=i| gL -y MC oy |, (14)
0x, ox, h c
In order to go to a real representation, if we set:
S = S, s =icp (15)
then (13) can be written:
za_% 9P _q (13a)

ox, ot

We are then justified in speaking of theas the components of a current density and
pas a charge density. The continuity equation (13a)dkisits between these quantities,
anda priori they do not have to satisfy any other condition itheorfor them to serve as
the sources of an electromagnetic field in Maxwell’'s éiqna. The factor 1Avas added
in (14) in order to makey and p real. One easily confirms that these quantities are
independent of the aforementioned indeterminacy in the gaite®, . They will be
obtained from the Hamilton functidd (10) by derivation with respect to the potentials,
as is also the case in Mie’s theory of matjerOne has:

h edH
Sg=————. 16
! 2mrcod, (16)

The field that is generated by the density is gilg the retarded potentials:
®,= 1 j IS gy dx = dx, dx dxs (17)
c’' R

by means of formula (5a)R is the distance from the volume eleméxto the origin and
square bracket shall indicate thas$ set equal to the valde- R/c. The radiation is equal
to the radiation that originates at the electriotee of mass for the charges. This center
of mass is defined by:

Y Cf, e.g., M. v. LaueRelativitatstheorie lleq. (271).
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e>€<=kapdx e=fpdx, (18)
which one can summarize as:

eXa:fxa,odx (18a)

From the continuity equation (13a), when the currentskes on the boundary of the
space to a sufficient degree, it then follows that:

0= zja% dx= - japdx
(% s) 0p
0= — T2 dx=—| x, —dx+ | s d»
D) e L B
The first equation says that the total chargeoisstant in time, as it must be, and the

second one, that the velocity of the center ofghas given by:

dX,

e =/sd 19
o [ scdx (19)
or, together with the last equation (18):

X, =] sy dx}). (19a)

In order for the field to be the classical onetior O (i.e., the correspondence principle),
(18) must go to the totality of all possible classimotions foih = 0%). In particular, the
total charge must be equal to the charge of thetrele, as we have already suggested by
the notation.

We next assume that, for natural boundary conwbticequation (9) possesses a
sequence of discrete solutiogs ¢, ..., which we summarize by the sum:

W=z . (20)

The (real) constantg are definitive of the weight of the state The densities (14)
become:

) Editor’s remark. One can, with E. Madelung (Natuswis} (1926), 1004), regard the current as
electricity moving with the velocity = s/p (s = 5, S, ). Its mass density is theno=mge. X, and

dX / dt are then the position and velocity of the center aésnresp. — By neglecting the magnetic field
and relativity, (14) yieldss = 14 O(¢ grad ¢ — ¢ gradZ ) = 2¢@ a", (with Madelung’s notation)p

_ 4mm _h .
= Tz//z/’/ , such thait = o @ as with Madelung.

%) In this determination, the possibility of additional terttmst vanish foh = 0 still exists. (Cf., rem. I,
pp. 12).
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Sa= D 2%%" (21)
Im
with
(Im) =i al/ll _ awm _ 477] S
Sa I[lpm aXa ‘/’| aXa h chawllpmj' (21a)

The s!™ define the elements of a Hermitian matrix, so they lbarderived from a

Hermitian matrixH™ in the manner of (16), which arises from thén (10) in such a
way that one replaceg and ¢ with ¢ and @, resp. According to (18), (19), and (21),
the motion will be represented by:

. dXx dx¢™
Xe=> 77, X™, k=> 727 ——, (22)
Im dt Im dt
with
(Im)
CXSm) = _[ Xic ,dlm) dx, Cdekt = jsﬁlm) dx. (22a)

The X™ are the Heisenberg matrices, in the event that thetifins ¢/ are suitably

normalized. In the case of (11), its Schrédinger reptatien follows from (22al).
If the index| is capable of taking on continuous values then integrgiear in place
of the sums.

3. Application to the Compton effect. The primary radiation will be described by
a plane, linearly-polarized wave with a direction n,, nz, and an oscillation number
Its potentials are:

®, = a, cosg, a=iag, (23)
with a phase:
27V
:T(anxk—ct) =Dl a, =X (24)
if one sets
=" n,. l=ily=i2Y (25)
C c

and sums of the fOI’I’E fo 9o are writtenfg, to abbreviate. The reIatioE n? =1 and
condition (4a) yield:

12=0, al=0. (26)
From (5a), the field is:

Y E. Schrédinger, Ann. d. Phy#9 (1926), 734.
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€, =i(al,-al)sing =2 @n, - a)sing o7

H, =(a,l,—aJ,)sing, and cyclic permutations

The electric vector lies in the plane through the meat and the wave normal that is
perpendicular to it, while the magnetic vector is pedprrar to that plane. Both of
them have a magnitude that is equ&lz—fgi Jaa sin g.

c

With the values (23) for thé,, while neglecting thea?, the differential equations
(8) and (9) read:

2
> ow —Z(ba—wj cosp + nPc? =0,
0x, (6)4
0%y Ari awj 47t
-—| b—— |cosp———nfcy =0,
Zc’)xj, h ( ax % i v
with
e
b, = E ag. (28)
They are solved by:
pb . 2y
W:px+asm¢, Yy=eh | (29)

if the relation (3a) exists between the integrattmmstant, (which likewise implies
their meaning), as one easily confirms by obser(2&)®).

We next determine the classical motion from (12We takepx = ¢« for the
independent integration constants, such that, &m

% - . (30)

Formula (12) yields, when one goes to a real remtasion by means of (2), (23), (28),
and (25):

_cp, C pb( E j ( E j .
= t — I, —-I - b,—=Db +dk . 31
X E +E( pl){ pI k c 0P« k c b Pk 5|n¢ k ( )

From (24), and in our approximation (except fooastant), the phase is set to:

Y The relation (29) betweeg andW, which was true only for small up to now, is also true here

2
rigorously, when one does not negleGtwhich adds the termst;l (2¢ + sin 29).
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6= 2m [z nk%—lJ - CE(pI) t (32)

The velocities are then:

dx _ ¢ c E E
d_)%: ERt+E{%Ib(lk_c_lopkj_(b"_c_bopkﬂ cosg. (33)

The motion then consists in a uniform, rectilineation with the velocitw (v = ¢?py /
E), over which a harmonic oscillation is overlaidhihe frequency:

Vo = v(l— > on, %} =v (1—2 cos?j , (34)

c

where# is the angle between the direction of the veloaitgl the wave normal.

The laws of quantum motion and radiation are dedudcom the knowledge of the
densitiess, . For the sake of normalization, we multiply sgdution ¢ of (29) by a (real)
function C(p1, p2, ps) of the constantp,, and using the template (20), we define the total
solution:

w=] #p)C(p) e’ dp dp=dp: dp. dps , (35)

where the integral is extended over allp$pace. Analogous to the energy-impulse
vector of the electron, we introduce the correspundjuantity for the primary light
quantum:

. hv

| —
Cc

= ie, =M, m=if (36) [from (25)]
21T c c

The de Broglie phases for the electron and liglain¢um are then:

_2m _ar
f= T(p %), = T(77x). (37)

According to (29), the phasez2h Wwill then be:

ZT]TW:H K sin ¢, (38)
with
- Pb (38a)
p7T

Moreover, we construct theg of (14) with (35). From (37), (38), and (38a)edmas:

ww =] en ™ 2p) 2p) Cp) C(p') dp dp,
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374” = 2 (py-+ k7 cosg) e " 2(p) 2Ap) C(p) C(F) dp

a

Y

in which d(p) means the differend&(p) — F(p'). If one takes the complex conjugate of
the last expression, when one simultaneously exchangesdoand unprimed quantities
(which is allowed, since it does not affect the notatibthe integration variables), then
what one gets is:

oy _
[0)4

a

_ZTMJ (p,+K mmcosg) e zp) Zp) C(p) C(P) dp dp.

Therefore, we have everything all at once that it ta@dse able to define ts of (14).
When one considers (23) and (28), one finds that:

27

S = ZT”J {OPo+ (TG ok— ) cosg} e " 2p) Zp) C(p) C(p') dp dp,

27
where g F(p) means the sur(p) + F(p'). In our approximation, here, from (38),"
must be replaced witd°'(1 +iok sin ¢), such that the curly bracket, when multiplied by

27

el equals: | |
{ops € +idk opssing + (7, ok— 2b,) cosg} €',

in which one can also introduce:

R{op.€°"+ (Ok ops + 1, ok— 2b,) cosg} €T 9

[% = real part]'). One confirms this, when one switchiesith —i and the primed with
the unprimed quantities and takes the arithmetic meantbfifitegrals in:

S = ZT”mI {OPa+Ta€ " M) 2p) 2p) C(p) C(P) dp dp,  (39)

To=0Kkops+ iy ok— 2b,. (40)

One can therefore write the corresponding cosine in {@&tead of the-functions.

In order to determine the functio@ we compare the “quantum motion” (19) with
the classical motion (33). We thus have to integrate (39) over the space af allThe
integral over thep, andx, that thus arises can be put into the form:

) The quantities with the index= 4 are thus to be considered as real. Their imagirsngs are first
introduced in the construction of their real parts.
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% (R—R)

jF(P, P) 2 dP d,

which, from the Fourier integral theorem, is equal to:
h? F(P, P").
Thus, withPy = p«, B, = p,, one has:
2ir 2
of === X (R-R)-"~(E- B)

[op.€" 49 @ p dpde2 h pz)pC)p

(41)

sinceps = p,— i.e.,E=F' —follows frompx =p,. WithPx=p« + 7%, P, = p,, one has:

2 2T
of +¢=— P-RB)=—(E+e-E
¢ thk(k 0= )t @)
[T,e°2 B ap dpdx hTE" (2)p(C),
v=Ere"E (42a)
h
in which one setg, =p« + 7. If one introduces:
m=o, =il 43)
then one can write this condition, together with (4ta)he symmetric form:
Pa+ 7= p, +71,. (44)

Therefore, according to (39), (41), and (42), (19a) reads:

= a7t | pa Z(p) C¥(p) dp + 247 | To Ap) 2p') C(p) C(p) cos 2wt dp.  (45)

dX,
e
t

If one then sets:

2= ec
4’ E

(46)

%) The coordinates(, in (18) are obtained from (19) by integrating over time. e Thtegration
constants play a role in the determination of the timtia
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and setZdp equal to the weight of the state- i.e., the relative number of electrons in
this state — then the parts in (33) and (45) that origimatiee uniform motion come into
agreement for = k !). For a = 4, the second integral in (45) must vanish, due to the
temporal constancy of the total chargeThis yields the relation:

[ 2dp=1 47)
for the weight, as it must be.
We would like to show that from (46) the oscillat@arts also come into agreement
whenh = 0. From (44), it follows that:

p?=p?+ 2om+ 1 — 20T - 27177 + 1T,

or since, from (3a)y'? = p> = - m?c?, and from (26) and (36)7 = 0, one has:

pIT=pIT + 7T - % . (48)
From this, when one goes to the real representatiog (@)n (36), and (43), it follows
that:
-z B
= . 48a
Y 2hv— hv (482)
1+5— 0
2E

Thus,v' agrees withv, in (34) forh = 0. From (44), th@, in (40) becomes:

If we multiply (44) byb, and sum over then we obtainp'b = pb — 77b, due to the
relation7zb = 0O that follows from (2§, in conjunction with (28) and (36). Analogously,
upon multiplying (44) byrz, we obtainp' 77= p7r— 7777, due to the relation? = 0 that we
already employed. Thus, from (38a), one has:

d<:p_b_ pb—ﬂDb: prrrb- pblrr
prr pr-mt  pr(pr- )

or, from (48):

&:M. (50)
o
P 2

Y Itis very plausible to assume that the uniform, rieetiir motion coincides classically and quantum-
theoretically, such that the additional terms in ren2aok pp. 6 drop out.
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Equations (48), (49), and (50) follow from (44) and are valid ieddpntly of the special
values (43) forrr>. For these values, from (50), one gets:

XK= M . (50a)
o7
2
With the abbreviatiop, = p,— 72 /2, it then arises from (49) that:
2
Ta= —[K(Paps—78pa) — Oaps—bapa)}. (51)

4

From this, it then follows thaf, = 0. As we have already concluded above, the
oscillatory part in (45) then vanishes o= 4. Fora =k, from (36), (38a), and (43), and

; O
with ps =i &/c = '—(E—h%j, one has:

C
2c| pb(, & ¢
Tk:E{%(IkE—Iopkj—(bkz—bopkj}. (51a)

The oscillatory part odlX, / dt in (45) then reads, with the use of (46):

S CECIE A *
j ¢JEE {plt{lkc |0pkj (bkc bopkj} cos 2w t dp.

For h = 0, one hast = E = E, px =p,, such that this expression agrees with the
oscillatory part in (33), since, as we found aba@elp is the weight of the stafe

For the determination of the frequencies and sit®s, we must further substitute
(39) into (17). We can then restrict ourselvesh oscillatory part, since obviously the
uniform, rectilinear motion does not contribute tbhe radiation. In the usual
approximation, for the distant reference poin¢'iff *? we replace th& in t — R/c with r
-2 & % , wherer is the distance from the reference point to a m@asition in the
charge domain and thé& are the direction cosines of(observation direction). We
simply replace th& in the denominator of (17) with With:

E+ , , E' * E+e-F
Pc=px+ 7% - gfk, R=pk——<‘k, V:L, (52)
c c h
one gets:
217 r
[F+¢] = ™ Z(PK—F{)xK—sz(t—Ej. (52a)

From (17) and (39), when one repla€ewith its value (46), the radiation potential then
becomes:
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mIT LZ2p 1 p) ’"Z(Pk R %27V (t=1/0) dpd[b b, (53)

a_

Here, we introduce the quantiti€® and B, as integration variables. The functional

determinant PP / dp | of thePy with respect to th@y is orthogonal invariant. One can
therefore rotate the axis-cross such that onghasps = 0. While observing (30), one
then has:

ﬁ:l—ﬂfl’ E:%:l
op, E op, Op,

while all other elements of the determinant vani€hne then finds, when one likewise
once more goes to a general position for the axissc

oP cp, \Y;
A:—:l—z— =1-— A 54
‘6p E & s cosy, (54)

where ¢ is the angle between the velocity and the observatirection. A is then the
well-known Doppler factor. The determinamtH /dp’ | is obtained from (54) when one
puts the primed quantities in place of the unprirores. The invariance of the weight
dp requires that:

Z(p) =Z°(P) A(p),  Z(p') =Z*(P) AP), (55)

whereZ? (Z'?, resp.) is the weighting function for taking thariablesP (P, resp.) as the
basis. (53) now takes the form:

J’T Z( P)Z(P) 7Z(Pk R) % —271i(t=r/c)

JEAE A

(A" =A(p)). If we apply Fourier’s integral theorem then fived that:

dPdP di(53a)

S LARZP),

JEAE A’

where we have substitut&i = P. Then, sinc&*P) dP andZ'*(P) dP are the weights of
the two state domains, which combine with each rotha individual “transition” is
associated with the radiation potential

0s Mm(t—éde, (56)

b, = ﬂ:T—"cos¢m. (56a)

2r JEAE' N

) Cf.,, the representation (22)z° corresponds t@(P) dP and z’ to Z*(P) dP, and therefore z,
corresponds td(P) Z'(P) dP.
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If we introduce the scattered quantum:

ﬁﬁﬁf@, 7fﬂi:mf (57)
c h c

then the relatio® = P, together with the last equation in (52), again assungefotim
(44):

Pat 7= P, +71,. (58)
These are the conservation laws for energy and impwisieh is the point from which
the light quantum theory of Compton-Debye starts. Funtore, sincer? = 0, equation
(48) reduces to:

p7T= p1T + 7777 (59)

From this, when one goes to the real representationg y2), (36), and (57), it then

follows that:
E
{E-zmn)
Vo=

E_z pk5k+rl:v(1_znk§(k),

(59a)

or, when one introduce the angebetween the primary and the secondary rays, along
with the previously-introduced angles ¢

v(l—v cosﬁj
c

*

v,
vV = b

v hv ~  hv ! (59b)
1—Ecos¢/+? ( co® A+E(1—cos@)

the last is true because of (34) and (54)One obtains the classical frequency from this
forh=0:
v,
Ve = Eb; (59c)
i.e., the frequency of motiow, divided by the Doppler factak, as it must be. If one

multiplies (58) by7z; and sums oves then sincerr” = 0, one obtaingy' 77 = p77 + 717,
which, upon comparison with (59), yields:

prr=p 1, (60)

or, from (2), (36), and (57), when it is writtenrial form:

) De Broglie, Ann. d. PhyS® (1925), 22.
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h—cv(Z PN, ——Ej = E(Z P —%)

C c

or finally, with the relations (34) and (54):

E'A" E'A

Vv = Ey, _ EA Vg - (61)

the last one is true because of (59c¢). If one switteprimed and unprimed guantities
in (58) and simultaneously switcheswvith —h then they go to each other. By means of
this exchange, from (61), one gets:

. _EV, _EN
VvV = = _

. 6la
EA EA cl ( )

From (61) and (61a), it then follows that:

R (62)

(ED)2y, _ (ED)™,
V- v

and

EAE A =

(63)

We now turn to the calculation of the intensitgrr (56a). (56a) represents (when
one ignores thge weakening factor)the potential of a plane wave of directién &, &,
and frequency , such that in analogy with (25) and (36) the plasebe written:

§=I'x= 2?”[17% X, (64)
with
0 0
0= 2V g 10 =2 = (64a)
c C 21T

From this, it then follows that in (56a), one camt&vfor T, :
To=2K 15, + OK pa—by), (65)

instead of (49); the term &k 7z, obviously gives rise to an additional term of thentf of

[ 0x, . It is easy to see that thg in (65), when expressed in terms of the unprimed o
primed quantities, is independentlofwhen one ignores an additional term of the form
of / 0x,). First of all, from (38a) and (3877, has the property that it is independenh,of
sinceh cancels in the numerator and denominator. Furtbe, from (50), sincer” = 0,
one has:
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_ bk’

16 4 o

(66)

Here, hv'/c cancels in the numerator and denominator. Since, from 4Oemains
unchanged when one switches the unprimed and primed tgs@indh with — h [in
which, as we remarked above, the relations (58) remahamnged], from (49) and (66),
one has:

To= K+ X(2p, +71,)— 2b,, (65a)
with
_ mb-K Ot
XK= Tp (66a)

or, when one again drops the additional térkaz, :

Te=2K %+ K p,— bg). (65b)
With the use of (63), (56a) reads:
®o= W Zacosd, (67)
in which we have set:
ec T
{a= “ (68)

S22 EAJy,

The {, are independent df and, from what we said abotlitand also from (63), they
have the property that:

{a={;- (68a)

The field strengths follow from (67) according to the @att(27). One simply has to
replaceg with ¢, v with v, and thea, with JV¢, in (27). The electric and magnetic

amplitudes will then be of the form:
A= V), (69)

where { again has the property (68a). If one goes to the fimil then it follows that’
is independent df:
|

A = ["—j A (69a)

cl

If one replaces the unprimed quantities in (69a) with ptimees then, sincé= ¢, it
becomes:

Ay =V (69D)

When (69) and (69b) are divided by each other, this gives:
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VD 3/2
A = [V’—j Atll .

cl

For the intensities, it results from (70) and (70a) that:

O 3
I*:["—j lal
Vcl
O 3
I’ :{V—j 1
Vv

Multiplying (70) by (70a) and (71) by (71a) gives, when one obsd62):

A* = AEI Aél
and

*

I = J1l!

clcl *

With this, we have the result:

18

(70a)

(71)

(71a)

(72)

(73)

The quantum frequencies and intensities of the @umpffect are equal to the
geometric means of the corresponding classical titiesin the initial and final states of

the process.

For the case of the electron that is initiallyest, relation (62) was derived by Brit
and relation (71) was derived by Bréjt from correspondence considerations and by

Dirac (loc. cit) using Heisenberg’s theory.

) G. Breit, Phys. Re\27 (1926), 362.



