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Abstract 

A computer is generally considered to be a universal 
computational device; i.e., it is believed able to simulate 
any physical computational device with a cost in com- 
putation time of at most a polynomial factol: It is not 
clear whether this is still true when quantum mechanics 
is taken into consideration. Several researchers, starting 
with David Deutsch, have developed models for quantum 
mechanical computers and have investigated their compu- 
tational properties. This paper gives Las Vegas algorithms 
for finding discrete logarithms and factoring integers on 
a quantum computer that take a number of steps which is 
polynomial in the input size, e.g., the number of digits of the 
integer to be factored. These two problems are generally 
considered hard on a classical computer and have been 
used as the basis of several proposed cryptosystems. (We 
thus give the first examples of quantum cryptanulysis.) 

1 Introduction 

Since the discovery of quantum mechanics, people have 
found the behavior of the laws of probability in quan- 
tum mechanics counterintuitive. Because of this behavior, 
quantum mechanical phenomena behave quite differently 
than the phenomena of classical physics that we are used 
to. Feynman seems to have been the first to ask what effect 
this has on computation [13, 141. He gave arguments as 
to why this behavior might make it intrinsically compu- 
tationally expensive to simulate quantum mechanics on a 
classical (or von Neumann) computer. He also suggested 
the possibility of using a computer based on quantum me- 
chanical principles to avoid this problem, thus implicitly 
asking the converse question: by using quantum mechan- 
ics in a computer can you compute more efficiently than 
on a classical computer. Other early work in the field of 
quantum mechanics and computing was done by Benioff 

[ 1,2]. Although he did not ask whether quantum mechan- 
ics conferred extra power to computation, he did show that 
a Thing machine could be simulated by the reversible uni- 
tary evolution of a quantum process, which is a necessary 
prerequisite for quantum computation. Deutsch [9,10] was 
the first to give an explicit model of quantum computation. 
He defined both quantum Turing machines and quantum 
circuits and investigated some of their properties. 

The next part of this paper discusses how quantum com- 
putation relates to classical complexity classes. We will 
thus first give a brief intuitive discussion of complexity 
classes for those readers who do not have this background. 
There are generally two resources which limit the ability 
of computers to solve large problems: time and space (i.e., 
memory). The field of analysis of algorithms considers 
the asymptotic demands that algorithms make for these 
resources as a function of the problem size. Theoretical 
computer scientists generally classify algorithms as effi- 
cient when the number of steps of the algorithms grows as 
a polynomial in the size of the input. The class of prob- 
lems which can be solved by efficient algorithms is known 
as P. This classification has several nice properties. For 
one thing, it does a reasonable job of reflecting the per- 
formance of algorithms in practice (although an algorithm 
whose running time is the tenth power of the input size, 
say, is not truly efficient). For another, this classification is 
nice theoretically, as different reasonable machine models 
produce the same class P. We will see this behavior reap- 
pear in quantum computation, where different models for 
quantum machines will vary in running times by no more 
than polynomial factors. 

There are also other computational complexity classes 
discussed in this paper. One of these is PSPACE, which 
are those problems which can be solved with an amount 
of memory polynomial in the input size. Another impor- 
tant complexity class is NP, which intuitively is the class 
of exponential search problems. These are problems which 
may require the search of an exponential size space to find 
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the solution, but for which the solution, once found, may 
be verified in polynomial time (possibly with a polynomial 
amount of additional supporting evidence). We will also 
discuss two other traditional complexity classes. One is 
BPP, which are problems which can be solved with high 
probability in polynomial time, given access to a random 
number generator. The other is P“, which are those prob- 
lems which could be solved in polynomial time if sums 
of exponentially many terms could be computed efficiently 
(where these sums must satisfy the requirement that each 
term is computable in polynomial time). These classes are 
related as follows: 

P c BPP, NP P#’ 5 PSPACE. 

The relationship of BPP and NP is not known. 
The question of whether using quantum mechanics in a 

computer allows one to obtain more computational power 
has not yet been satisfactorily answered. This question 
was addressed in [ l l ,  6, 71, but it was not shown how to 
solve any problem in quantum polynomial time that was 
not known to be solvable in BPP (the class of problems 
which can be solved in polynomial time with a bounded 
probability of error). Recent work on this problem was 
stimulated by Bernstein and Vazirani’s paper [5 ]  which 
laid the foundations of the quantum computation theory of 
computational complexity. One of the results contained in 
this paper was an oracle problem (a problem involving a 
“black box” subroutine) which can be done in polynomial 
time on a quantum Turing machine and requires super- 
polynomial time on a classical computer. This was the 
first indication, other than the fact that nobody knew how 
to simulate a quantum computer on a classical computer 
without an exponential slowdown, that quantum computa- 
tion might obtain a greater than polynomial speedup over 
classical computation augmented with a random number 
generator. This result was improved by Simon [28], who 
gave a much simpler construction of an oracle problem 
which takes polynomial time on a quantum computer and 
requires exponential time on a classical computer. Indeed, 
by viewing Simon’s oracle as a subroutine, this result be- 
comes a promise problem which takes polynomial time on a 
quantum computer and looks as if it would be very difficult 
on a classical computer. The algorithm for the “easy case” 
of discrete log given in this paper is directly analogous to 
Simon’s algorithm with the group Z t  replaced by the group 
Z,- 1 ; I was only able to discover this algorithm after seeing 
Simon’s paper. 

In another result in Bernstein and Vazirani’s paper, a 
particular class of quantum Turing machine was rigorously 
defined and a universal quantum Turing machine was given 
which could simulate any other quantum Turing machine 
of this class. Unfortunately, it was not clear whether these 

quantum Turing machines could simulate other classes of 
quantum Turing machines, so this result was not entirely 
satisfactory. Yao [32] has remedied the situation by show- 
ing that quantum Turing machines can simulate, and be 
simulated by, uniform families of polynomial size quantum 
circuits, with at most polynomial slowdown. He has further 
defined quantum Turing machines with k heads and showed 
that these machines can be simulated with slowdown of a 
factor of 2k.  This seems to show that the class of problems 
which can be solved in polynomial time on one of these 
machines, possibly with a bounded probability E < 113 
of error, is reasonably robust. This class is called BQP in 
analogy to the classical complexity class BPP, which are 
those problems which can be solved with a bounded prob- 
ability of error on a probabilistic Turing machine. This 
class BQP could be considered the class of problems that 
are efficiently solvable on a quantum Turing machine. 

Since BQP c P#‘ C PSPACE [ 5 ] ,  any non-relativized 
proof that BQP is strictly larger than BPP would imply the 
structural complexity result BPP PSPACE which is not 
yet proven. In view of this difficulty, several approaches 
come to mind; one is showing that BQP C BPP would 
lead to a collapse of classical complexity classes which are 
believed to be different. A second approach is to prove 
results relative to an oracle. In Bennett et al. [4] it is shown 
that relative to a random oracle, it is not the case that NP 
& BQP. This proof in fact suggests that a quantum com- 
puter cannot invert one-way functions, but only proves this 
for one-way oracles, i.e. “black box” functions given as a 
subroutine which the quantum computer is not allowed to 
look inside. Such oracle results have been misleading in 
the past, most notably in the case of IP = PSPACE [ 15,271. 
A third approach, which we take, is to solve in BQP some 
well-studied problem for which no polynomial time algo- 
rithm is known. This shows that the extra power conferred 
by quantum interference is at least hard to achieve using 
classical computation. Both Bernstein and Vazirani [5] and 
Simon [28] also gave polynomial time algorithms for prob- 
lems which were not known to be in BPP, but these problems 
were invented especially for this purpose, although Simon’s 
problem does not appear contrived and could conceivably 
be useful. 

Discrete logarithms and integer factoring are two 
number-theory problems which have been studied exten- 
sively but for which no polynomial-time algorithms are 
known [16, 19, 20, 251. In fact, these problems are so 
widely believed to be hard that cryptosystems based on 
their hardness have been proposed, and the RSA public key 
cryptosystem [26], based on the hardness of factoring, is in 
use. We show that these problems can be solved in BQP. 

Currently, nobody knows how to build a quantum com- 
puter, although it seems as though it could be possible 
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within the laws of quantum mechanics. Some suggestions 
have been made as to possible designs for such computers 
[29, 21, 22, 121, but there will be substantial difficulty in 
building any of these [18, 311. Even if it is possible to 
build small quantum computers, scaling up to machines 
large enough to do interesting computations could present 
fundamental difficulties. It is hoped that this paper will 
stimulate research on whether it is feasible to actually con- 
struct a quantum computer. 

Even if no quantum computer is ever built, this research 
does illuminate the problem of simulating quantum me- 
chanics on a classical computer. Any method of doing this 
for an arbitrary Hamiltonian would necessarily be able to 
simulate a quantum computer. Thus, any general method 
for simulating quantum mechanics with at most a polyno- 
mial slowdown would lead to a polynomial algorithm for 
factoring. 

2 Quantum computation 

In this section we will give a brief introduction to quan- 
tum computation, emphasizing the properties that we will 
use. For a more complete overview I refer the reader to 
Simon’s paper in this proceedings [28] or to earlier papers 
on quantum computational complexity theory [5,32]. 

In quantum physics, an experiment behaves as if it pro- 
ceeds down all possible paths simultaneously. Each of these 
paths has a complex probability amplitude determined by 
the physics of the experiment. The probability of any par- 
ticular outcome of the experiment is proportional to the 
square of the absolute value of the sum of the amplitudes 
of all the paths leading to that outcome. In order to sum 
over a set of paths, the outcomes have to be identical in 
all respects, i.e., the universe must be in the same state. A 
quantum computer behaves in much the same way. The 
computation proceeds down all possible paths at once, and 
each path has associated with it a complex amplitude. To 
determine the probability of any final state of the machine, 
we add the amplitudes of all the paths which reach that final 
state, and then square the absolute value of this sum. 

An equivalent way of looking at this process is to imag- 
ine that the machine is in some superposition of states at 
every step of the computation. We will represent this su- 
perposition of states as 

a 

where the amplitudes a, are complex numbers such that xi lai = 1 and each IS*) is a basis state of the machine; 
in a quantum Thing machine, a basis state is defined by 
what is written on the tape and by the position and state of 
the head. In a quantum circuit a basis state is defined by 

the values of the signals on all the wires at some level of 
the circuit. If the machine is examined at a particular step, 
the probability of seeing basis state IS,) is la,[’; however, 
by the Heisenberg uncertainty principle, looking at the ma- 
chine during the computation will disturb the rest of the 
computation. 

The laws of quantum mechanics only permit unitary 
transformations of the state. A unitary matrix is one whose 
conjugate transpose is equal to its inverse, and requiring 
state transformations to be represented by unitary matri- 
ces ensures that the probabilities of obtaining all possible 
outcomes will add up to one. Further, the definitions of 
quantum Turing machine and quantum circuit only allow 
local unitary transformations, that is, unitary transforma- 
tions on a fixed number of bits. 

Perhaps an example will be informative at this point. 
Suppose our machine is in the superposition of states 

and we apply the unitary transformation 

00 01 10 1 1  

1 1  I f 1 
2 

-- 

to the last two bits of our state. That is, we multiply the 
last two bits of the components of the vector (2.2) by the 
matrix (2.3). The machine will then go to the superposition 
of states * (~ooo) + 1001) + [OlO) + 1011)) + f  (101)+f 1 1 1 1 ) .  

(2.4) 
Notice that the result would have been different had we 
started with the superposition of states 

which has the same probabilities of being in any particular 
configuration if it is observed. 

We now give certain properties of quantum computation 
that will be useful. These facts are not immediately ap- 
parent from the definition of quantum Thing machine or 
quantum circuit, and they are very useful for constructing 
algorithms for quantum machines. 

Fact 1: A deterministic computation is performable on a 
quantum computer if and only if it is reversible. 
From results on reversible computation [3,30], we 
can compute any polynomial time function f(a) 
as long as we keep the input, a, on the machine. To 
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Fact 2: 

erase a and replace it with f ( a )  we need in addition 
that f is one-to-one and that a is computable in 
polynomial time from f ( a ) ;  i.e., that both f and 
f - I  are polynomial-time computable. 

Any polynomial size unitary matrix can be approx- 
imated using a polynomial number of elementary 
unitary transformations [ 10,5,32] and thus can be 
approximated in polynomial time on a quantum 
computer. Further, this approximation is good 
enough so as to introduce at most a bounded prob- 
ability of error into the results of the computation. 

3 Building unitary transformations 

Since quantum computation deals with unitary transfor- 
mations, it is helpful to be able to build certain useful unitary 
transformations. In this section we give some techniques 
for constructing unitary transformations on quantum ma- 
chines, which will result in our showing how to construct 
one particular unitary transformation in polynomial time. 
These transformations will generally be given as matrices, 
with both rows and columns indexed by states. These states 
will correspond to representations of integers on the com- 
puter; in particular, the rows and columns will be indexed 
beginning with 0 unless otherwise specified. 

A tool we will use repeatedly in this paper is the follow- 
ing unitary transformation, the summation of which gives 
a Fourier transform. Consider a number a with 0 5 a < q 
for some q where the number of bits of q is polynomial. 
We will perform the transformation that takes the state la) 
to the state 

a- 1 

( b )  exp(27riab/q) q’I2 
b=O 

(3.1) 

That is, we apply the unitary matrix whose ( a ,  b)’th entry 
is & exp(2mab/q). This transformation is at the heart 
of our algorithms, and we will call this matrix A,.  Since 
we will use A ,  for q of exponential size, we must show 
how this transformation can be done in polynomial time. 
In fact, we will only be able to do this for smooth numbers 
q, that is, ones with small prime factors. In this paper, we 
will deal with smooth numbers q which contain no prime 
power factor that is larger than (logq)“ for some fixed c. 
It is also possible to do this transformation in polynomial 
time for all smooth numbers q; Coppersmith shows how to 
do this for q = 2k using what is essentially the fast Fourier 
transform, and that this substantially reduces the number of 
operations required to factor [ 81. 

If we know a factorization q = qlq2q3 . . . qk where 
gcd( ql, q3 ) = 1 and where IC and all of the qz are of poly- 
nomial size we will show how to build the transformation 
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A ,  in polynomial time by composing the A,, . For this, we 
first need a lemma on quantum computation. 

Lemma3.1 Suppose the matrix B is a block-diagonal 
mn x mn unitary matrix composed of n identical unitary 
m x m matrices B’ along the diagonal and 0’s everywhere 
else. Suppose further that the state transformation B’ can 
be done in time T(B‘)  on a quantum Turing machine. Then 
the matrix B can be done in T (  B’) + (log mn)“ time on a 
quantum Turing machine, where c is a constant. 

We will call this matrix B the direct sum of n copies of B’ 
and use the notation B = $, B’. This matrix B is the 
tensor product of B’ and I,,, where I,, is the n x n identity 
matrix. 

Proof Suppose that we have a number a on our tape. 
We can reversibly compute a1 and a 2  from a where a = 
mal + a2. This computation erases a from our tape and 
replaces it with crl and 1x2. Now a1 tells in which block the 
row a is contained, and a 2  tells which row of the matrix 
within that block is the row a. We can then apply B’ to a 2  

to obtain p2 (erasing a 2  in the process). Now, combining 
a1 and p2 to obtain b = mal + p2 gives the result of B 
applied to a (with the right amplitude). The computation 
of B’ takes T(B’) time, and the rest of the computation is 
polynomial in log m + log n. 

We now show how to obtain A ,  for smooth q. We 
will decompose A ,  into a product of a polynomial number 
of unitary transformations, all of which are performable 
in polynomial time; this enables us to construct A ,  in 
polynomial time. Suppose that we have q = q1q2 with 
gcd(ql, q2) = 1. What we will do is represent A ,  = CD,  
where by rearranging the rows and columns of D we obtain e,, A,, and rearranging the rows and columns of C we 
obtain $,, A,, . As long as these rearrangements of the 
rows and columns of C and D are performable in polyno- 
mial time (i.e., given row r ,  we can find in polynomial time 
the row r’ to which it is taken) and the inverse operations 
are also performable in polynomial time, then by using the 
lemma above and recursion we can obtain a polynomial- 
time way to perform A ,  on a quantum computer. 

We now need to define C and D and check that 
A, = CD.  To define C and D we need some preliminary 
definitions. Recall that q = qlq2 with q1 and q2 relatively 
prime. Let w = exp(27ri/q). Let U be the number (mod q )  
such that U E 0 (mod 41) and U = - 1 (mod 42). Such a 
number exists by the Chinese remainder theorem, and can 
be computed in polynomial time. We will decompose row 
and column indices a, b and c as follows: a = a1q2 + a 2 ,  

b = plql + p2, and c = 7141 + 72. Note the asymmetry in 
the definitions of a, b and c. 
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We can now define C and D: 

and 

It is easy to see that CD(a,  c )  = C(a, b)D(b, c) where 
6 = a2ql + 7 2  since we need a2 = P1 and PZ = 72 to 
ensure non-zero entries in C(a, b) and D(b, c). Now, 

- 1 Wai~z~+a2~~q1+a2~2 - p  
- - $ W ( a l q z + a 2 ) ( Y l ~ l + - f z )  

= $ W a c  (3.4) 

SO CD(a, C) = A,(a, c). 
We will now sketch how to rearrange the rows and 

columns of C to get the matrix eq2 A q l .  The matrix C 
can be put in block-diagonal form where the blocks are 
indexed by cy2 = 01 (since all entries with az # /31 are 0). 
Let U + 1 = tqz (mod q).  Within a given block a2 = PI, 
the entries look like 

f i  qa, b )  = w~1P29z+PIP2(u+~)  

= exp(274a1P2 + PlPZt)QZ/Q) 
= exp(27ri(a1 + azt)PZ/ql) .  (3.5) 

Thus, if we rearrange the rows within this block so that they 
are indexed by a’ cy1 +a2t (mod q l ) ,  we obtain the trans- 
formation a’ -+ & with amplitude + exp(2nia’h/ql); 

that is, the transformation given by the unitary matrix with 
the (a‘, Pz) entry equal to % exp(2?ricrf&/ql), which is 
A,, . The matrix D can similarly be rearranged to obtain 
the matrix eq, Aq2.  

We also need to show how to find a smooth q that lies 
between n and 2n in polynomial time. There are actually 
smooth q much closer to n than this, but this is all we need. 
It is not known how to find smooth numbers very close to 
n in polynomial time. 

‘I1 

‘I1 

Lemma 3.2 Given n, there is a polynomial-time algorithm 
to find a number q with n 5 q < 2n such that no prime 
power larger than clogq divides q, for some constant c 
independent of n. 

Proof To find such a q, multiply the primes 2 ~3 ~5 a7 . 
11 . . . pk until the product is larger than n. Now, if this 

product is larger than 2n, divide it by the largest prime 
that keeps the number larger than n. This produces the 
desired q. There is always a prime between m and 2m [ 17, 
Theorem 4 181, so n 5 q < 2n. The prime number theorem 
[ 17, Theorem 61 and some calculation show that the largest 
prime dividing q is of size O(1og n). 

Note that if we are using Coppersmith’s transformation 
A2k using the 2% roots of unity, we set q = 2k where 
IC = [logznJ + 1. 

I 

4 Discrete log: the easy case 

The discrete log problem is: given a prime p, a generator 
g of the multiplicative group (mod p) and an x (mod p ) ,  
find an T such that g’ = x (mod p). We will start by 
giving a polynomial-time algorithm for discrete log on a 
quantum computer in the case that p - 1 is smooth. This 
algorithm is analogous to the algorithm in Simon’s paper 
[28], with the group e replaced by &-I. The smooth case 
is not in itself an interesting accomplishment, since there are 
already polynomial time algorithms for classical computers 
in this case [24]; however, explaining this case is easier 
than explaining either the general case of discrete log or the 
factoring algorithm, and as the three algorithms are similar, 
this example will illuminate how the more complicated 
algorithms work. 

We will start our algorithm with x, g and p on the tape 
(i.e., in the quantum memory of our machine). We are 
trying to compute T such that g‘ E x (mod p). Since we 
will never delete them, x, g ,  and p are constants, and we 
will specify a state of our machine by the other contents of 
the tape. 

The algorithm starts out by “choosing” numbers a and 
b (mod p - 1) uniformly, so the state of the machine after 
this step is 

p - Z p - 2  

-yY)oJ)* (4.1) 
- a=O b=O 

The algorithm next computes gax-b (mod p) reversibly, so 
we must keep the values a and b on the tape. The state of 
the machine is now 

What we do now is use the transformation Ap-l to map 
a -+ c with amplitude (p-‘)L/Iexp(2~iac/(p - 1)) and 
b + d with amplitude (p--l)l/l.exp(2?ribd/(p- 1)). As was 
discussed in the previous sechon, this is a unitary transfor- 
mation, and since p - 1 is smooth it can be accomplished 
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in polynomial time on a quantum machine. This leaves the 
machine in state 

P--2 

02 exp ( s ( a c  + b d ) )  IC, d, g a x P b  (mod p ) )  . 

(4.3) 
We now compute the probability that the computation ends 
with the machine in state IC, d ,  y) with y g k  (mod p ) .  
This probability is the absolute value of the square of the 
sum over all ways the machine could produce this state, or 

a,b,c ,d=O 

l2  

I a - r b i k  I 

where the sum is over all a, b satisfying a - rb = IC (mod 
p - 1). This condition arises from the fact that compu- 
tational paths can only interfere when they give the same 
y g a - r b  f g k  (mod p ) .  We now substitute the equation 
a k + rb (mod p - 1) in the above exponential. The 
above sum then reduces to 

However, if d + rc $ 0 (mod p - 1) the above sum is 
over a set of (p - l )s t  roots of unity evenly spaced around 
the unit circle, and thus the probability is 0. If d -rc 
the above sum is over the same root of unity p - 1 times, 
giving (p - l)e2nzkc/(p--1), so the probability is l /(p- 1 ) 2 .  
We can check that these probabilities add up to one by 
counting that there are (p - 1)2 states IC,  -rc, y)  since 
there are p - 1 choices of c (mod p - 1) and p - 1 choices 
of y $ 0  (mod p ) .  

Our computation thus produces a random c (mod p - 1) 
and the corresponding d = --TC (mod p - 1). If c and p - 1 
are relatively prime, we can find T by division. Because 
we are choosing among all possible c's with equal proba- 
bility, the chance that c and p - 1 are relatively prime is 
$ ( p  - l ) / (p  - l ) ,  where 4 is the Euler $-function. It is 
easy to check that 4 ( p  - l ) / (p  - 1) > 1/ log@). (Actu- 
ally, from [ 17, Theorem 3281, liminf 4 ( p  - I)/(p - 1) M 

e-7 / log log p . )  Thus we only need a number of exper- 
iments that is polynomial in logp to obtain T with high 
probability. In fact, we can find a set of c's such that at least 
one is relatively prime to every prime divisor of p - 1 by 
repeating the experiment only an expected constant number 
of times. This would also give us enough information to 
obtain T .  

5 A note on precision 

The number of bits of precision needed in the ampli- 
tude of quantum mechanical computers could be a barrier 
to practicality. The generally accepted theoretical divid- 
ing line between feasible and infeasible is that polynomial 
precision (i.e., a number of bits logarithmic in the problem 
size) is feasible and that more is infeasible. This is because 
on a quantum computer the phase angle would need to be 
obtained through some physical device, and constructing 
such devices with better than polynomial precision seems 
unquestionably impractical. In fact, even polynomial pre- 
cision may prove to be impractical; however, using this 
as the theoretical dividing line results in nice theoretical 
properties. 

We thus need to show that the computations in the pre- 
vious section need to use only polynomial precision in the 
amplitudes. The very act of writing down the expression 
exp(27riac/(p - 1)) seems to imply that we need exponen- 
tial precision, as this phase angle is exponentially precise. 
Fortunately, this is not the case. Consider the same ma- 
trix A,-, with every term exp(27riac/(p - l ) )  replaced by 
exp(27rzac/(p - 1) f 7rz/20). Each positive case, i.e., one 
resulting in d = -rc, will still occur with nearly as large 
probability as before; instead of adding p - 1 amplitudes 
which have exactly the same phase angle, we add p - 1 
amplitudes which have nearly the same phase angle, and 
thus the size of the sum will only be reduced by a constant 
factor. The algorithm will thus give a (c, d )  with d -rc 
with constant probability (instead of probability 1). 

Recall that we obtain the matrix Ap-l by multiplying at 
most logp matrices Aq, . Further, each entry in A,-, is the 
product of at most logp terms. Suppose that each phase 
angle were off by at most E /  logp in the Aq, ' s .  Then in 
the product, each phase angle would be off by at most 6 ,  

which is enough to perform the computation with constant 
probability of success. A similar argument shows that the 
magnitude of the amplitudes in the Aq, can be off by a 
polynomial fraction. Similar arguments hold for the general 
case of discrete log and for factoring to show that we need 
only polynomial precision for the amplitudes in these cases 
as well. 

We still need to show how to construct Aq, from con- 
stant size unitary matrices having limited precision. The 
arguments are much the same as above, but we will not give 
them in this paper because, in fact, Bennett et al. 141 have 
shown that it is sufficient to use polynomial precision for 
any computation on a quantum Turing machine to obtain 
the answer with high probability. 

Since precision could easily be the limiting factor for 
practicality of quantum computation, it might be advisable 
to investigate how much precision is actually needed for 
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quantum algorithms. Although Bemstein and Vazirani [4] 
show that the number of bits of precision needed is never 
more than the logarithm of the number of computational 
steps a quantum computer takes, in some algorithms it 
could conceivably require less. Interesting open questions 
are whether it is possible to do discrete logarithms or factor- 
ing with less than polynomial precision and whether some 
tradeoff between precision and time is possible. 

6 Factoring 

The algorithm for factoring is similar to the one for the 
general case of discrete log, only somewhat simpler. I 
present this algorithm before the general case of discrete 
log so as to give the three algorithms in this paper in order 
of increasing complexity. Readers interested in discrete log 
may skip to the next section. 

Instead of giving a quantum computer algorithm to 
factor n, we will give a quantum computer algorithm 
for finding the order of an element z in the multiplica- 
tive group (mod n); that is, the least integer T such that 
zr 1 (mod n). There is a randomized reduction from 
factoring to the order of an element [23]. 

To factor an odd number n, given a method for comput- 
ing the order of an element, we choose a random z, find 
the order T, of z, and compute gcd(zr=/2 - 1,n). This 
fails to give a non-trivial divisor of n only if T,  is odd or if 
z r z I 2  E - 1 (mod n). Using this criterion, it can be shown 
that the algorithm finds a factor of n with probability at 
least 1 - 1/2k, where IC is the number of distinct prime 
factors of n. This scheme will thus work as long as n is 
not a prime power; however, factoring prime powers can 
be done efficiently with classical methods. 

Given z and n, to find T such that zr = 1 (mod n), we 
do the following. First, we find a smooth q with 2n2 5 q < 
4n2. Next, we put our machine in the uniform superposition 
of states representing numbers a (mod q).  This leaves our 
machine in state 

I 9-1 

- 1.). (6.1) q ' / 2  
a=O 

As in the algorithm for discrete log, we will not write n, 5, 

or q in the state of our machine, because we never change 
these values. 

Next, we compute xa (mod n). Since we keep z and a 
on the tape, this can be done reversibly. This leaves our 
machine in the state 

. 9-1 
1 la, za (mod n)) . 
q ' I 2  

a=O 

We then perform our Fourier transform A, mapping a + c 

with amplitude -& exp(2?riac/q). This leaves our ma- 
chine in state 

- 0-1 

1 exp(2?riac/q) IC, za (mod n)) . (6.3) 
Q a=O 

Finally, we observe the machine. It would be sufficient 
to observe solely the value of c, but for clarity we will 
assume that we observe both c and za (mod n). We now 
compute the probability that our machine ends in a particu- 
larstatelc,~' (modn)),wherewemayassumeO5 IC < T .  

Summing over all possible ways to reach this state, we find 
that this probability is 

where the sum is over all a, 0 5 a < q, such that 
za = x k  (mod n). Because the order of 2 is T ,  this sum is 
equivalently over all a satisfying a = IC (mod T ) .  Writing 
a = br + IC, we find that the above probability is 

12 l(g-k- l ) / rJ 

- exp(2ni(b + k)c/q) . (6.5) 
b=O 

We can ignore the term of exp(2niICc/q), as it can be 
factored out of the sum and has magnitude 1. We can 
also replace TC with { T C } ~ ,  where { T C } ~  is the residue 
which is congruent to TC (mod q)  and is in the range 
-q/2 < {TC} ,  5 q/2. This leaves us with the expres- 
sion 

- exp(2?rib{~c),/q) 
b=O 

We will now show that if { T C } ~  is small enough, all the 
amplitudes in this sum will be in nearly the same direction, 
giving a large probability. If {TC} ,  is small with respect 
to q, we can use the change of variables t = b/q and 
approximate this sum with the integral 

If I { T C } ~  I 5 r/2, this quantity can be shown to be asymptot- 
ically bounded below by 4/(7r2r2), and thus at least 1/3rZ. 
The probability of seeing a given state I C ,  x k  (mod n))  will 
thus be at least 1 /3r2 if 

-7- - < { T C }  < E, (6.8) 2 -  g - 2  
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i.e., if there is a d such that 

exp (?(ac + bd)) 
a--rb=k 

Dividing by rq and rearranging the terms gives 

(7.3) 

(6.10) 

We know c and q .  Because q 2 2n2, there is at most one 
fraction d / r  with T < n that satisfies the above inequality. 
Thus, we can obtain the fraction d / r  in lowest terms by 
rounding c / q  to the nearest fraction having a denominator 
smaller than n. This fraction can be found in polynomial 
time by using a continued fraction expansion of c/q, which 
finds all the best approximations of c/q by fractions [17, 
Chapter XI. 

If we have the fraction d / r  in lowest terms, and if d 
happens to be relatively prime to r ,  this will give us r.  
We will now count the number of states IC, x k  (mod n)) 
which enable us to compute r in this way. There are 4 ( r )  
possible values ford relatively prime to r ,  where 4 is Euler’s 
4 function. Each of these fractions d / r  is close to one 
fraction c / q  with Ic/q - d/rI 5 1/2q. There are also r 
possible values for x k ,  since r is the order of x. Thus, there 
are r 4 ( r )  states I C ,  x k  (mod n)) which would enable us to 
obtain r.  Since each of these states occurs with probability 
at least 1/3r2, we obtain r with probability at least 4(r)/3r.  
Using the theorem that # ( r ) / r  > Ic/loglogr for some 
fixed Ic [17, Theorem 3281, this shows that we find T at 
least a k/ log log r fraction of the time, so by repeating this 
experiment only O(1og log r )  times, we are assured of a 
high probability of success. 

Note that in the algorithm for order, we did not use many 
of the properties of multiplication (mod n) .  In fact, if we 
have a permutation f mapping the set {0,1,2, .  . . , n - 1) 
into itself such that its Icth iterate, f ( ‘ ) (a ) ,  is computable 
in time polynomial in log n and log I c ,  the same algorithm 
will be able to find the order of an element a under f, i.e., 
the minimum r such that f ( ‘ ) (a)  = a. 

7 Discrete log: the general case 

For the general case, we first find a smooth number q 
such that q is close to p ,  i.e., with p 5 q 5 2p (see Lemma 
3.2). 

Next, we do the same thing as in the easy case, that is, we 
choose a and b uniformly (mod p - l ) ,  and then compute 
gaxPb (mod p ) .  

1 

P - 1  

This leaves our machine in the state 

p-2 p-2 

As before, we use the Fourier transform A, to send a -+ c 
andb -t d (mod q ) ,  withamplitude exp(27ri(ac+bd)/q), 
giving us the state 

p-2 ,-I 

exp ( y ( u c + b d ) )  I C ,  d,  gaxPb (mod p ) )  . 

(7.2) 
Note that we now have two moduli to deal with, p - 1 and q .  
While this makes keeping track of things more confusing, 
we will still be able to obtain r using a algorithm similar to 
the easy case. The probability of observing a state I C ,  d,  y) 
with y 

(p--1)9 
a,b=O c,d=O 

gk (mod p )  is, almost as before, 

I 12 

where the sum is over all ( a ,  b) such that a - r b  z 
Ic (mod p - 1). We now use the relation 

a = br  + - ( p  - 1) 1-1 (7.4) 

and substitute in the above expression to obtain the ampli- 
tude 

P--2 

& exp ( y  (brc + Icc + bd - c(p - 1) 1-1 ) ) . 
b=O 

(7.5) 
The absolute value of the square of this amplitude is 
the probability of observing the state I C ,  d, g k  (mod p ) ) .  
We will now analyze this expression. First, a factor of 
exp(27riIcc/q) can be taken out of all the terms and ig- 
nored, because it does not change the probability. Next, we 
split the exponent into two parts and factor out b to obtain 

where 

U = bT, 
T = r c  + d - *{c(p - l)},, (7.7) 

and 

v = (5- (7.8) 

Here by { z } ,  we mean the residue of z (mod q )  with 
-q/2 < { z } ,  5 q/2. We will show that if we get enough 
“good” outputs, then we still can deduce r ,  and that fur- 
thermore, the chance of getting a “good” output is constant. 
The idea is that if 

a=O b=O 
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where j is the closest integer to T/q,  then as b varies be- 
tween 0 and p - 2, the phase of the first exponential term 
in Eq. (7.6) only varies over at most half of the unit circle. 
Further, if 

I{C(P - 1)}l71 I q/20, (7.10) 

then [VI is always at most q/20, so the phase of the sec- 
ond exponential term in Eq. (7.6) never is farther than 
exp(nill0) from 1. By combining these two observa- 
tions, we will show that if both conditions hold, then the 
contribution to the probability from the corresponding term 
is significant. Furthermore, both conditions will hold with 
constant probability, and a reasonable sample of c’s for 
which Condition (7.9) holds will allow us to deduce T .  

We now give a lower bound on the probability of each 
good output, i.e., an output that satisfies Conditions (7.9) 
and (7.10). We know that as b ranges from 0 to p - 2, the 
phase of exp(2aiU/q) ranges from 0 to 27riW where 

P - 2  W = - ( T C  + d - * { c ( p  - l)}q - j q )  (7.11) 
9 

and j is as in Eq. (7.9). Thus, the component of the ampli- 
tude of the first exponential in Eq. (7.6) in the direction 

exp (ni W) (7.12) 

is at least cos(27r IW/2 - Wb/(p  - 2)l). Now, by Condi- 
tion (7.10). the phase can vary by at most 7ri/lO due to the 
second exponential exp( 27riVlq). Applying this variation 
in the manner that minimizes the component in the direc- 
tion (7.12), we get that the component in this direction is at 
least cos(27r IW/2 - Wb/(p  - 2)1+ n/lO). Since p < q, 
and from Condition (7.9), IWI I 1/2, putting everything 
together, the probability of arriving at a state IC, d, y) that 
satisfies both Condition (7.9) and (7.10) is at least 

2 (-!: c I m c o s t  d t )  , (7.13) 

or at least . 137/q2. 
We will now count the number of pairs (c, d) satisfying 

Conditions (7.9) and (7.10). The number of pairs ( c , d )  
such that (7.9) holds is exactly the number of possible c’s, 
since for every c there is exactly one d such that (7.9) holds 
(round off the fraction to the nearest integer to obtain this d). 
The number of c’s for which (7.10) holds is approximately 
q/lO. Thus, there are q/10 pairs ( c , d )  satisfying both 
conditions. Multiplying by p - 1, which is the number 
of possible y’s, gives approximately w / 1 0  states IC, d, y). 
Combining this calculation with the lower bound on the 
probability of each good state gives us that the probability 
of obtaining any good state is at least p/8Oq, or at least 
1/160 (since q < 2p). 

We now want to recover T from a pair c ,  d such that 

where this equation was obtained from Condition (7.9) by 
dividing by q. The first thing to notice is that the multiplier 
on T is a fraction with denominator p - 1, since q evenly 
divides c ( p  - 1) - { c ( p  - l)}q. Thus, we need only round 
d / q  off to the nearest multiple of l / ( p  - 1) and divide 
( m d p  - 1) by 

to find a candidate T .  To show that this experiment need 
only be repeated a polynomial number of times to find the 
correct T requires only a few more details. The problem 
is again that we cannot divide by a number which is not 
relatively prime to p - 1. 

For the general case of the discrete log algorithm, we 
do not know that all possible values of c’ are generated 
with reasonable likelihood; we only know this about one- 
tenth of them. This additional difficulty makes the next 
step harder than the corresponding step in the two previous 
algorithms. If we knew the remainder of T modulo all prime 
powers dividing p - 1, we could use the Chinese remainder 
theorem to recover T in polynomial time. We will only be 
able to find this remainder for primes larger than 20, but 
with a little extra work we will still be able to recover T.  

What we have is that each good ( c ,  d) pair is generated 
with probability at least .137p/q > 1/ 16q, and that at least 
a tenth of the possible c’s are in a good (c,  d) pair. From 
Eq. (7.15), it follows that these c’s are mapped from c / q  to 
c ‘ / ( p  - 1) by rounding to the nearest integer multiple of 
l/(p - 1). Further, the good c’s are exactly those in which 
c / q  is close to c ’ / ( p  - 1). Thus, each good c corresponds 
with exactly one c‘. We would like to show that for any 
prime power p,”’ dividing p -  1. a random good c‘ is unlikely 
to contain p, .  If we are willing to accept a large constant for 
the algorithm, we can just ignore the prime powers under 
20; if we know T modulo all prime powers over 20, we can 
try all possible residues for primes under 20 with only a 
(large) constant factor increase in running time. Because at 
least one tenth of the c’s were in a good ( c ,  d) pair, at least 
one tenth of the c”s are good. Thus, for a prime power 
p;‘, a random good c’ is divisible by pga with probability 
at most lO/p;’. If we have t good c”s, the probability of 
having a prime power over 20 that divides all of them is 
therefore at most 

a. 
P, ’ IP-I 

(7.16) 
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where the sum is over all prime powers greater than 20 that 
divide p - 1. This sum (over all integers > 20) converges 
for t = 2, and goes down by at least a factor of 2 for each 
further increase o f t  by 1; thus for some large constant t it 
is less than 1/2. 

Recall that each good c’ is obtained with probability at 
least 1/16q from any experiment. Since there are q/10 
good c”s, after 160t experiments, we are likely to obtain a 
sample of t good C”S chosen equally likely from all good 
c”s. Thus, we will be able to find a set of d ’ s  such that all 
prime powers pp’ > 20 dividing p - 1 are relatively prime 
to at least one of these d ’ s .  For each prime p ,  less than 
20, we thus have at most 20 possibilities for the residue 
modulo p p ’ ,  where Q, is the exponent on prime p ,  in the 
prime factorization of p - 1. We can thus try all possibilites 
for residues modulo powers of primes less than 20: for each 
possibility we can calculate the corresponding r using the 
Chinese remainder theorem, and then check to see whether 
it is the desired discrete logarithm. 

This algorithm does not use very many properties of Z,, 
so we can use the same algorithm to find discrete logarithms 
over other fields such as Z,-. What we need is that we know 
the order of the generator, and that we can multiply and take 
inverses of elements in polynomial time. 

If one were to actually program this algorithm (which 
must wait until a quantum computer is built) there are many 
ways in which the efficiency could be increased over the 
efficiency shown in this paper. 
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