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Following Van der Waals, we have learnt to think of the molecules 
as centres of forces and to consider these so-called Molecular Forces as 
the common cause for various phenomena: The deviations of the gas 
equation from that of an ideal gas, which, as one knows, indicate the 
identity of the molecular forces in the liquid with those in the gaseous 
state ; the phenomena of capillarity and of adsorption ; the sublimation 
heat of molecular lattices ; certain effects of broadening of spectral lines, 
etc. I t  has already been possible roughly to determine these forces in 
a fairly consistent quantitative way, using their measurable effects as 
basis. 

In these semi-empirical calculations, for reasons of simplicity, one 
imagined the molecular forces simply as rigid, additive central forces, 
in general cohesion, like gravitation ; this presumption actually implied 
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F. LONDON 9 

a very suggestive and simple explanation of the parallelism observed in 
the different effects of these forces. When, however, one began to try 
to explain the molecular forces by the general conceptions of the electric 
structure of the molecules i t  seemed hopeless to obtain such a simple 
result. 

Q 1. Orientation Effect.1 
Since molecules as a whole are usually uncharged the dipole moment 

p was regarded as the most important constant for the forces between 
molecules. The interaction between two such dipoles pI and pII depends 
upon their relative orientation. The interaction energy is well known 
to be given to a first approximation by 

u = - P B ( 2  cos e, cos eII - sin 0, sin e,, cos (+, - ( I )  R3 

where SI, +I ; OI1, are polar co-ordinates giving the orientation of the 
dipoles, the polar axis being represented by the line joining the two 
centres, R = their distance. We obtain attraction as well as repulsion, 
corresponding to the different orientations. If all orientations were 
equally often realised the average of p would be zero. 

But according to Boltzmann statistics the orientations of lower 
energy are statistically preferred? the more preferred the lower the 
temperature. Keesom, averaging over all positions, found as a result 
of this preference : 

P12PI12 I u=- - - - -  
3 R6 kT (valid for '9 < kT) .  

- 

For low temperatures or small distances (kT 5'9) this expression 

does not hold. It is obvious that the molecules cannot have a more 
favourable orientation than parallel to each other along the line joining 
the two molecules, in which case one would obtain as interaction energy 
{see ( I ) )  : 

- U = - 2m1 (valid for > kT) . 
R3 R3 (3) 

which gives in any case a lower limit for this energy. (2) and (3) 
represent an attractive force, the so-called orientation effect, by which 
Keesom tried to interpret the Van der Waals attraction. 

Q 2. Induction Effect.2 
Ac- 

cording to (2) they give an attraction which vanishes with increasing 
temperature. But experience shows that the empirical Van der Waals 
corrections do not vanish equally rapidly with high temperatures? and 
Debye therefore concluded that there must be, in addition, an interaction 
energy independent of temperature. In this respect i t  would not help to 
consider the actual charge distribution of the molecules more in detail, 

W. H. Keesom, Leiden Comm. Suppl., 1912, 248, 24b, 25, 26; 1915, 39a, 
39b. Proc. Amst., 1913, 15, 240, 256, 417, 643; 1916, 18, 636; 1922, 24, 162. 
Physak. Z . ,  1921, 22, 129, 643 ; 1922,23, 225. 

H. Falckenhagen, 
Physik. Z . ,  1922, 23, 87. 

Debye remarked that these forces cannot be the only ones. 

2 P .  Debye, Physik. Z., 1920, 21, 178; 1921, 22, 302. 
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10 T H E  GENERAL THEORY OF MOLECULAR FORCES 

e.g. by introducing the quadrupole and higher moments. The average of 
these interactions also would vanish for high temperatures. 

But by its charge distribution alone a molecule is, of course, still 
very roughly characterised. Actually, the charge distribution will be 
changed under the influence of another molecule. This property of a 
molecule can very simply be described by introducing a further constant, 
the polarisability a. In an external electric field of the strength F a 
molecule of polarisability a shows an induced moment 

M = a . F  . * (4) 

u = -  +a.  F2 . - (5 )  

(in addition to a possible permanent dipole moment) and its energy in 
the field F is given by 

Now the molecule I may produce near the molecule I1 an electric 
field of the strength 

F = R d1 + 3 cos2 e, . (6) 

This field polarises the molecule I1 and gives rise to an additional 
interaction energy according to (5) 

which is always negative (attraction) and therefore its average, even for 
infinitely high temperatures, is also negative. Since cos2 8 = Q we 
obtain : 

- l-g 
u1+11= - Or,, R6 

A corresponding amount would result for oII-+I, i.e. for the action of 
pII upon aI. As totaI interaction of the two molecules we obtain : 

* (8) 
I - 

r J = -  R3(aIpI12 + “1#’12) . 

If the two molecules are of the same kind (p, = pII = p and orI = tcII = a)  
we have 

- (8’) 
u = - -  2 ap2 

R6 ‘ 
This is the so-called induction effect. 

In such a way Debye and Falckenhagen believed i t  possible to  
explain the Van der Waals equation. But many molecules have 
certainly no permanent dipole moment (rare gases, H,, N2, CH,, etc.). 
There they assumed the existence of quadrupole moments T ,  which 
would of course also give rise to a similar interaction by inducing 
dipoles in each other. Instead of (8) this would give 1 

Since no other method of measuring these quadrupoles was known, the 
Van der Waals corrections (second Virial coefficient) were used in order 
to  determine backwards r ,  which, after p and a, has been regarded as the 
most fundamental molecular constant. 
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F. LONDON I 1  

3 3. Criticism of the Static Models for Molecular Forces. 
The most obvious objection to all these conceptions is that  they 

do not explain the above mentioned parallelism in the different mani- 
festations of the molecular forces. One cannot understand why, for 
example, in the liquid and in the solid state between all neighbours 
simultaneously practically the same forces should act as between the 
occasional pairs of molecules in the gaseous state. All these models are 
very far from simply representing a general additive cohesion : 

Suppose that two molecules I and I1 have such orientations of their 
permanent dipoles that they are attracted by a third one ; then between 
the two former molecules very different forces are usually operative, 
mostly repulsive forces. Or, if the forces are due to polarisation, the 
acting field will usually be greatly lowered, when many molecules from 
different sides superimpose their polarising fields. One should expect, 
therefore, that  in the liquid and in the solid state the forces caused by 
induced or permanent dipoles or multipoles should a t  least be greatly 
diminished, if not by reasons of symmetry completely cancelled. 

The situation seemed to be still worse when wave mechanics showed 
that the rare gases are exactly spherically symmetrical, that  they have 
neither a permanent dipole nor quadrupole nor any other multipole. 
They showed none of the mentioned interactions. I t  is true, that  for 
H,, N,, etc., wave mechanics, too, gives a t  least quadrupoles. But for 
H, we are now able to calculate the value of the quadrupole moment 
numerically by wave mechanics. One gets only about I/IOO of the 
Van der Waals forces tha t  were attributed hitherto to suitably chosen 
quadrupoles. 

On the other hand, wave mechanics has provided us with a completely 
new aspect of the interaction between neutral atomic systems. 

9 4. Dispersion Effect; a Simplified Model.3 
Let us take two spherically symmetrical systems, each with a polarrs- 

ability a, say two three-dimensional isotropic harmonic oscillators with 
no permanent moment in their rest position. If the charges e of these 
oscillators are artificially displaced from their rest positions by the dis- 
placements 

--t -+ 
YI = (XI, YI, 21) and YII = (%I, YII, 211) 

respectively, we obtain for the potential energy : 

Elastic Energy. Dipole Interaction Energy 
(cf. (I)). 

Classically the two systems in their equilibrium position 
(XI = XI1 = . . . = 211 = 0) 

would not act upon each other and, when brought into finite distance 
(R  > G), remain in their rest position. They could not influence a 
momentum in each other. 

F. London, 2. physik. CAem., 1930. €3, 1 1 ,  222. 
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12 THE GENERAL THEORY OF MOLECULAR FORCES 

However, in quantum mechanics, as is well known, a particle cannot 
lie absolutely at  rest on a certain point. That would contradict the 
uncertainty relation. According to quantum mechanics our isotropic 
oscillators, even in their lowest states, make a so-called zero-point 
motion which one can only describe statistically, for example, by a 
probability function which defines the probability with which any con- 
figuration occurs; whilst one cannot describe the way in which the 
different configurations follow each other. For the isotropic oscillators 
these probability functions give a spherically symmetric distribution of 
configurations round the rest position. (The rare gases, too, have such 
a spherically symmetrical distribution for the electrons around the 
nucleus.) 

We need not know much quantum mechanics in order to discuss our 
simple model. We only need to know that in quantum mechanics the 
lowest state of a harmonic oscillator of the proper frequency v has the 
energy 

E,= +hv . - (11)  

the so-called zero-point energy. If we introduce the following co- 
ordinates (" normal "-co-ordinates) : 

the potential energy (10) can be written as a sum of squares like the 
potential energy of six independent oscillators (while the kinetic energy 
would not change its form) : 

e2 e2 
2u zR3 + 

Y = -(Y+2 + 7-2) + - ( x  + y+2 - 22+2 - L2 - y-2 + 22-3 . 

= "[(I 2U + ;)(X+2 + r+3 + ( I  - j$)(x-2 + y-2) + 
( I  - 2 3 + 2  + ( I  + i I $ ) z 2 ]  (10') 

The frequencies of these six oscillators are given by 

e 
d m u  

Here vo = - is the proper frequency of the two elastic systems, if 

isolated from each other ( R  3 a), and m is their reduced mass. Assum- 
ing a < R3, we have developed the square roots in (12) into powers of 

The lowest state of this system of six oscillators will therefore be 
given, according to (11), by : 

(a/R3). 
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F. LONDON 

h 

hv U U2 

E,  = 2 (v,+ + vy+ + v,+ + v,- + vy- + vz-) 

= -[6 + (Q+ & - 1 - 8 - 8 + I)@ - (* + + ) p + .  . 
2 

= 3hvo - - hvoua - + . . . . 
4 R6 

The first term 3hvo is, of course, simply the internal zero-point energy of 
the two isolated elastic systems. The second term, however, 

(13) 

depends upon the distance R and is to be considered as an interaction 
energy which, being negative, characterises an attractive force. We 
shall presume that this type of which is not conditioned by the 
existence of a permanent dipole or any higher multipole, will be respons- 
ible for the Van der Waals attraction of the rare gases and also of the 
simple molecules H,, N,, etc. For reasons which will be explained 
presently these forces are called the dispersion effect. 

§ 5. Dispersion Effect ; General Formula.5 
Though it  is of course not possible to describe this interaction 

mechanism in terms of our customary classical mechanics, we may still 
illustrate i t  in a kind of semi-classical language. 

If one were to take an instantaneous photograph of a molecule at 
any time, one would find various configurations of nuclei and electrons, 
showing in general dipole moments. In a spherically symmetrical rare 
gas molecule, as well as in our isotropic oscillators, the average over very 
many of such snapshots would of course give no preference for any 
direction. These very quickly varying dipoles, represented by the zero- 
point motion of a molecule, produce an electric field and act upon the 
polarisability of the other molecule and produce there induced dipoles, 
which are in phase and in interaction with the instantaneous dipoles 
producing them. The zero-point motion is, so to speak, accompanied by 
a synchronised electric alternating field, but not by a radiation field : 
The energy of the zero-point motion cannot be dissipated by radiation. 

This image can be used for interpreting the generalisation of our 
formula ( 1 3 )  for the case of a general molecule, the exact development of 
which would of course need some quantum mechanical calculations. 

We may imagine a molecule in a state k as represented by an orchestra 
of periodic dipoles PkZ which correspond with the frequencies 

of (not forbidden) transitions to the states 1. These “ oscillator 
strengths,” PkZ, are the same quantities which appear in the “ dis- 
persion formula ” which gives the polarisability uk(v) of the molecule 
in the state k when acted on by an alternating field of the frequency v. 

4 This type of force first appeared in a calculation of S. C. Wang, Physik. 2. 
1927, zB, 663. 

R. Eisenschitz and F. London, Z. Physik, 1930, 60, 491. 
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14 THE GENERAL THEORY OF MOLECULAR 

If the acting field of the frequency u, has the amplitude 
moment M is given by 

FORCES 

F,, the induced 

and the interaction energy between field and molecule by 

Now this acting field may be produced by another molecule by one 
of its periodic dipoles ppu with the frequency upu and inclination ePu to 
the line joining the two molecules. Near the first molecule (we call i t  
the “Latin” molecule, using Latin indices for its states, and Greek 
indices to the other one) the dipole ppu produces an electric field of the 
strength (compare (6) )  : 

Fpu = ppu -41 + 3 coS 2epu.  

This field induces in the Latin molecule a periodic dipole of the amount : 

- (6’) Ra 

MPuk = ak(’pu) F p m ,  

and an interaction energy (compare (5‘)) : 

If we now consider the whole orchestra of the “ Greek ” molecule in the 
state p we have to sum over all states u and to average over all direc- 
tions Opu (cos2 8 = 1 /3 ) .  This would give us the action of the Greek 
atom upon the polarised Latin atom : 

Adding the corresponding expression Uk+p for the action of the Latin 
molecule upon the Greek one, we obtain the total interaction due to the 
“periodic ” dipoles of a molecule in the state k with another in the state p : 

$ 6 .  Additivity of the Dispersion Effect. 
Of course this reasoning does not claim to be an exact proof of (IS) ,  

but it may perhaps illustrate the mechanism of these forces. It can be 
shown that the formula (15) has the peculiarity of additivity; this 
means that if three molecules act simultaneously upon each other, the 
three interaction potentials between the three pairs of the form (15) are 
simply to be added, and that any influence of a third molecule upon the 
interaction between the first two is only a small perturbation effect of a 
smaller order of magnitude than the interaction itself. These attractive 
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F. LONDON I 5  

forces can therefore simply be superposed according to the parallelogram 
of forces, and they are consequently able to represent the fact of a general 
cohesion. 

If several molecules interact simultaneously with each other, one has 
to imagine tha t  each molecule induces in each of the others a set of 
co-ordinated periodic dipoles, which are in constant phase relation with 
the corresponding inducing original dipoles. Every molecule is thus the 
seat of very many incoherently superposed sets of induced periodic 
dipoles caused by the different acting molecules. Each of these induced 
dipoles has always such an orientation that i t  is attracted by its corres- 
ponding generating dipole, whereas the other dipoles, which are not 
correlated by any phase relation, give rise to a periodic interaction only 
and, on an average over all possible phases, contribute nothing to the 
interaction energy. So one may imagine that the simultaneous inter- 
action of many molecules can simply be built up as an additive super- 
position of single forces between pairs. 

0 7. Simplified Formula ; Some Numerical Values. 
For many simple gas molecules (e.g. the rare gases, H,, N,, 0,, CH,), 

the empirical dispersion curve has been found to be representable, in a 
large frequency interval, by a dispersion formula of the type ( 1 4 )  con- 
sisting of one single term only. That means that for these molecules 
the oscillator strength p k z  for frequencies of a small interval so far 
exceed the others that  the latter can entirely be neglected. In this case, 
and for the limiting case v + o (polarisability in a static field) the formula 
( 1 4 )  can simply be written : 

(pk signifies the dipole-strength of the only main frequency v k )  and 
formula (15) for the interaction of the two systems goes over into : 

pk2 k2 vk - v~ TJPk = - - - 
3hRg V k  ’ vp . vk + vp 

This formula is identical with (13) in the case of two molecules of the 
same kind. It can, of course, only be applied if one already knows that 
the dispersion formula has the above-mentioned special form. But in 
any case, if the dispersion formulz of the molecules involved are empiric- 
ally known, their data can be used and are sufficient to build up the 
attractive force (15). No further details of the molecular structure need 
be known. 

We give, in Table I., a list of theoretical values for the attractive 
constant c (2.e. the factor of - l/Rs in the above interaction law) for 
rare gases and some other simple gases where the refractive index can 
fairly well be represented by a dispersion formula of one term only. 
The characteristic frequency vo multiplied by h is in all these cases very 
nearly equal to the ionisation energy hvl. This may, to a first approxi- 
mation, justify using the latter quantity in similar cases where a disper- 
sion formula has not yet been determined. I t  is seen that the values of 
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16 THE GENERAL THEORY OF MOLECULAR FORCES 

G vary in a ratio from I to 1000, and this wide range of the order of 

Li+ . 
Na+ . 
K+ . 
Rh+. 
Cs+ . 

TABLE I.-DISPERSION EFFECT BETWEEN 
SIMPLE MOLECULES. 

c,+ = 0-13 3'2 4'0 5'4 c++ = 0'11 
7-14 17.8 22.2 30-3 2.68 

31.0 76-3 95'3 130 38.6 
49'2 125 I57 214 94'3 
82.5 205 259 356 247 

- 
H e .  
Ne . 
Ar . 
Kr . 
Xe . 
H 2  - 
N2 * 

0, * co . 
CH, co* 
c1, . 
HCl 
HBr 
H I .  

N a  . 
- 

hUI 
(e . Volts). 

24'5 
21.5 
15'4 
13.3 
11.5 

I 6.4 
I7 
13 
14'3 
14'5 

I 8.2 

13'7 
13'3 
12.7 

h*D 
(c .Volts). 

25'5 
25'7 
17'5 
14'7 
12'2 

I 7-2 
14'7 

15-45 

2'1 

a. 10% 
[ cm.S ] .  

0'20 
0.39 
1.63 
2-46 
4-00 

0.81 
1-74 
1'57 
1-99 
2-58 
2-86 
4-60 

2-63 

5'4 

29'7 

3'58 

0'77 
2-93 

34'7 
69 

146 

8.3 
38.6 
27.2 
42'4 
73 
94'7 

288 

71 
I28 
278 

960 

magnitude makes even 
a very crude experi- 
mental test of these 
forces instructive (see 
s 11). 

J. E. Mayer has 
shown that, for the 
negative rare - gas - like 
ions, one is not justified 
in simplifying the dis- 
pers ion  of t h e  con- 
tinuum by assuming one 
single frequency only. 
He used a simple ana- 
lytical expression for 
the empirical continu- 
ous absorption and re- 
placing the sums in (15 )  
by integrals over these 
continua he gets the 
following list of c values 
for the 29 possible pairs 
of ions (Table 11.) : 

Starting from a dif- 
ferent method (variation method) and using some simplifying assump- 
tions as to the wave functions of the atoms (products of single electronic 
wave functions) Slater and Kirkwood 6a have also calculated these forces. 
They found the following formula : 

(N = number of electrons in the outer shell.) 

This expression usually gives a somewhat greater value than (13) and 
may be applied in those cases in which the characteristic frequencies in 
(13) are not obtainable. But a t  present it is difficult to say how far 
one may rely on formula (I 3"). 

TABLE II.-DISPERSION EFFECT BETWEEN IONS. 

(c . 104* in units [e . volts crn."). 

1 F-. c1-. Br. I-. I 

600-676 I I C,, =23-30 176-206 294-332 

6 J. E. Mayer, J. Chew. Physics, 1933, I ,  270. 
6* J. C. Slater and J. G. Kirkwood, Physic. Rev., 1931, 37, 682. 

D
ow

nl
oa

de
d 

by
 P

en
ns

yl
va

ni
a 

St
at

e 
U

ni
ve

rs
ity

 o
n 

30
 J

ul
y 

20
12

Pu
bl

is
he

d 
on

 0
1 

Ja
nu

ar
y 

19
37

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/T

F9
37

33
00

08
B

View Online

http://dx.doi.org/10.1039/tf937330008b


F. LONDON 

$ 8 .  Systematics of the Long Range F o r ~ e s . ~  
The formula ( IS)  applies quite generally for freely movable mole- 

cules so long as the interaction energy can be considered as small com- 
pared with the separation of the energy-levels of the molecules in 
question ; i .e.  so long as 

With this restriction, the formula (15) holds for freely movable dipole 
molecules, as well as for rare gas molecules. There is therefore always a 
minimum distance for R up to which we can rely on (IS). 

The difference between a molecule with permanent dipole and a rare 
gas molecule consists in the following : A rare gas molecule has such a 
high excitation energy (electronic jump) that for normal temperatures 
we can assume that all molecules are in the ground state ; therefore we 
have forces there independent of temperature. For a dipole molecule, 
on the other hand, we have to consider a Boltzmann distribution over a t  
least the different rotation states, because the energy difference between 
these states is usually small in somparison with kT. 

Let us a t  first consider an absolutezy rigid dipole (dumb-bell) molecule 
(ie. a molecule without electronic or oscillation states). Then the pro- 
bability p p k  that the Greek molecule is in the pure rotation state p and 
the Latin one in the pure rotation state k is given by 

where 
1 A-1 = Z,-,-(%+EP)* 

kkp 

The mean interaction between two such molecules is accordingly 

If in this expression we interchange the notation of the summation 
indices p and k with a and I, the value of the sum of course remains 
unchanged. Therefore, taking the average of these two equivalent 
expressions we can write (since pkz = 'lk) : 

pk 

Developing the exponentials into powers of I / ~ T  we notice that the con- 
stant terms cancel each other (no interaction for high temperature as in 
5 I). The first and the only important term of the development of (17') 
yields : 

Pa 

Here we designate by pI and pII the permanent moments of the dipole 
molecule, which for an absolutely rigid molecule are of course independent 

F. London. 2. Physik, 1930. 63, 245. 
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18 THE GENERAL THEORY OF MOLECULAR FORCES 

of the state. We therefore obtain exactly the same result as Keesom 
did from classical mechanics. One can, by the way, show that whilst 
the validity of (15) is bounded by the condition (16) the result (IS) is 
only bounded by the weaker condition 

which was also the limit for the validity of the classical calculation. 
In reality a dipole molecule cannot, of course, be treated as a simple 

rigid dumb-bell, It has electronic and oscillation transitions as well. 
Let us, for sake of simplicity, assume that kT is big in comparison to the 
energy differences for pure rotation jumps, but small for all the other 
jumps. 

In this general case we have again formula (17), but here i t  is sufficient 
to extend the Boltzmann sum L' only over those states which imply pure 

rotation jumps from the ground state, since the thermo-dynamicaI prob- 
ability of the other states being occupied is negligible. We now divide 
the sum over [I and I in (17) into four parts 

pk 

in the following way : 
( I )  In U,.,. both, 0 and I ,  shall be restricted to those values which 

differ from the ground-state only by a pure rotation transition. For 
this sum (with certain uninteresting reservations) the above calculation 
for the rigid dipoles remains valid. Accordingly we get (IS) 

3Rg kT ' 
P12PI12 u,, = - - - 

i.e. Keesom's orientation effect. 
(2) In U,., the summation over a as before shall be extended only 

over those terms which differ from the ground state by a pure rotation 
jump; but l shall designate a great (not a pure rotation-) jump. Then 
we may neglect E,  - Ep in comparison with El - E, in the denominators 
of (17) and can write 

Comparison with (14) shows that the terms of the second sum on the 
right-hand side can be represented by the static polarisability ap = ap (0) 
of the second molecule which will depend very little on the state of 
rotation p of the molecule so that we may signify it simply by orII; 
whereas the first sum again gives the square of the permanent dipole 
moment of the first molecule, of which we also may assume that i t  is 
approximately independent of the state of rotation We obtain 

2 PI2@,, . p12 . +aII(o) = - - Rs  . ' T ,  = - 3 R 6  

(3) Correspondingly 

(2) and ( 3 )  are exactly Debye's induction eflect. 

a great (not a pure rotation-) jump. 
(4) In U,, finally both, a and I ,  shall differ from the ground state by 

If we assume that the transition 
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F. LONDON I9 

probabilities of such a jump do not depend noticeably on the state of 
rotation, we can take simply the ground state for p and k and obtain 

2.e. the dispersion effect. 
join the three effects in the form 

If the conditions for (13') are fulfilled we may 

We give, in Table III., a short list for the three effects of some dipole 
molecules : 

TABLE JII.-THE THREE CONSTITUENTS OF THE VAN DER WAALS' FORCES. 

1-1- 
co . 
HI . 
HBr . 
IICl . 
H,O . 
NH, 

0'1 2 
0.38 
0.78 
I -03 
1'5 
1-84 

1 '99 
5'4 

2.63 

1-48 

3'58 

2'21 

It  is seen that the ir 

1 Orientation 
Effect 

14'3 

13'3 
13'7 
16 
18 

I2 
0.0034 
0.35 
6.2 
18.6 
84 

1 90 

Induction 
Effect 

2 p k .  1080 
[erg cm.63. 

Dispersion 
Effect 

ta2hvo. 1060 
[erg cm.61. 

0.05 7 
1-48 
4-05 
5'4 

I 0  
I 0  

[uction effect is in all cases practically negligible, 
and that even in such a strong dipole molecule as HC1 the permanent 
dipole moments give no noticeable contribution to the Van der Waals' 
attraction. Not earlier than with NH, does the orientation effect 
become comparable with the dispersion effect, which latter seems in no 
case to be negligible. 

8 9.  Limits of Validity. 
We have yet t o  discuss the physical meaning of the condition (16). 
In quantum mechanics, in characteristic contrast to classical 

mechanics, a freely movable polyatomic molecule has a centrally sym- 
metric and, particularly in its lowest state, a spherically symmetric 
structure, i .e .  a spherically symmetric probability function. That 
means that on the average, even in its lowest state, a free molecule does 
not prefer any direction, it changes its orientation permanently owing 
to its zero-point motion. If another molecule tries to orientate the 
molecule in question a compromise between the zero-point motion and 
the directing power will be made, but only for 

p-l > I E ,  - E,  I . . (20a) 

the directive forces preponderate over the zero-point rotation. Accord- 
ingly, in this case, the motion of the dipoles becomes more similar to a 
vibration near the equilibrium orientation of the dipoles (parallel to each 
other along the line joining the two molecules) and the interaction will 
then be of the nature of orientated dipoles, i .e .  of the order of magnitude 
of 

R3 
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20 THE GENERAL THEORY OF MOLECULAR FORCES 

In quantum mechanics, we learn, in contrast to  (3), the condition 

is not sufficient for the molecules being orientated. The orientating 
forces have not only to overcome the temperature motion but in addition 
the zero-point motion also. If @ is the moment of inertia of the molecule 

the right-hand side of (20a) becomes equal to F@; h2 and using this one 

can easily show that, for example, for HI molecules, a t  the distances 
they have in the solid state, the directive forces of the dipoles are still 
too weak to overcome the zero-point rotation. One has therefore to 
imagine these molecules always rotating even at the absolute zero in the 
solid state. But HI is certainly rather an exceptional case. 

It is obvious that for larger molecules and for small molecuIar 
distances in the solid and liquid state the directive forces are quite 
insufficiently represented by the dipole action. For these one has 
simply to replace the left-hand side of (20) by the classical orientation 
energy in order to obtain a reasonable estimate for the limit of free 
motion. 

As long as we are within the limits of (16 )  our argument in 6 6 as to 
the additivity holds quite generally for all the three effects collected in 
formula (19). Only if, in consequence of (20), the free motion of the 
molecules is hampered does the criticism of 0 3 apply, and this concerns 
the non-additivity of the direction effect as well as of the induction effect. 

The internal electronic motion of a molecule, however, will not ap- 
preciably be influenced when the rotation of the molecule as a whole is 
stopped. Thus one is justified in applying the formula for the dispersion 
effect for non-rotating molecules also. 

It is obvious, however, that only the highly compact molecules, as 
listed in Tables I. and II., can reasonably be treated simply as force 
centres. For the long organic molecules i t  seems desirable to try to build 
up the Van der Waals’ attraction as a sum of single actions of parts of the 
molecules. As it is rather arbitrary to attribute the frequencies appear- 
ing in (15) or (13) to the single parts of a molecule, i t  has been attempted * 
to eliminate them by making use of the approximate additivity of the 
atomic refraction as well as of the diamagnetic susceptibility. 

If there is one single “strong” oscillator p k  only (cf. 14’) the dia- 
magnetic susceptibility has simply the form : 

(NL Loschmidt’s number) 

therefore, because of [14’), 

We can therefore write, instead of (13‘), 
Xk x p  -- 3kua- 4mc2 a k  a, 

”’= 5 R6 ’hNL x k / u k  + x P / U p  

- I 6mc2 ukap --- 
Re N L  Olk/Xk + up/% 

* J. G. Kirkwood, Physik. Z., 1932, 33, 57; A. Muller, Proc. Roy. SOC. A ,  
1936, 154,624. 
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F. LONDON 21 

0.84 
4'94 

69.0 
I 80 
448 

In this formula the interaction energy is represented by approximately 
additive atomic constants, and i t  seems quite plausible to build up 
in such a way the Van der Waals' 
attraction of polyatomic molecules from 
oinple atomic actions. But the com- 

TABLE IV. 

0'77 
2-93 

34'7 
69 

146 

paison  given in Table IV. shows tha t  
the exactitude of this method is appar- 
ently not very great. 

For the dispersion effect also, the H~ . 
condition (16) indicates a characteristic Ne . 

I 

I 

. .  
A .  
Kr . limit. The quantity d E L  is prac- 

tically identical with the polarisability 
a, if Ek -+ E l  is the " main " electronic 
jump (compare 14'). Accordingly, instead of (16) we may roughly write 

Ek- Ez x .  

a < R3 . (16') 
as condition for the validity of our formulae for the dispersion effect. 
What a > R3 would mean can easily be inferred from considering our 
simple model (0 4) : Some of the proper frequencies (12) would become 
imaginary, and tha t  indicates tha t  for these short distances the rest 
positions of the electrons would no longer be positions of stable equi- 
librium. 

noticed that if R, is the shortest possible 
atomic distance (atomic diameter) the alternative " tc > RO3 or a < R,S " 
nearly coincides with the alternative " metal or insulator." Accordingly, 
for the non-metallic atoms and molecules listed in Table I. one is a.lways 
within the limits of (16). 

Some time ago Herzfeld 

§ 10. Higher Approximations. Repulsive Forces. 
The formula ( IS )  is very far from completely representing the 

molecular forces, even of the rare gases, for all distances. It can be 
considered as a first step of a calculus of successive approximation. The 
state of a molecule is of course only quite roughly characterised by its 
orchestra of periodic dipoles ; there are obviously also periodic quad- 
rupoles and higher multipoles, which give rise to similar interactions 
proportional to R-8, R-10, etc. For big distances these terms are in any 
case smaller than the forces, and there one may rely on formula ( I S ) .  
For He and H-atoms one lo could calculate the term and could show 
that for small distances i t  can give rise to a contribution comparable with 
the 

For these small distances, however, quite another effect has also to 
be considered. Even if a molecule does not show any permanent 
multipole but has, on an average, an  absolutely spherically symmetrical 
structure, e.g. like the rare gases, quite apart from all effects due to the 
internal electronic motion, the mean charge distribution itself gives rise 
to a strong, so to speak " static," interaction, simply owing to the fact 
that  by penetrating each other the electronic clouds of two molecules no 
longer screen the nuclear charges completely and the nuclei repel each 
other by the electrostatic Coulomb forces. In addition to this, and 
simultaneously, a second influence is to be considered. Already the 

term. But the R-l0 term seems always to be negligible. 

K. F. Herzfeld, Physic. Rev., 1927, 29, 701. 
l o  H. bfargenau, ibid., 1931, 38, 747. 
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22 THE GENERAL THEORY OF MOLECULAR FORCES 

penetration of the two electronic clouds is hampered by the Pauli Prin- 
ciple : two electrons can only be in the same volume element of space 
if they have sufficiently different velocity. This means that for the 
reciprocal penetration of the two clouds of electrons the velocity and 
therefore also the kinetic energy of the internal electronic motion must 
be augmented : energy must be supplied with the approach of the mole- 
cules, i.e. repulsion. 

This repulsion corresponds to the homopolar attraction in the case of 
unsaturated molecules. In an unsaturated molecule there are electrons 
with unsaturated spin and of these, when penetrating the cloud of a 
corresponding other molecule, the Pauli Principle no longer demands 
‘‘ sufficiently different ” velocity but only different spin orientation. In 
that case, consequently, one has a repulsion only for much smaller 
distances. 

The actual calculation of the repulsive forces needs of course a very 
exact knowledge of the charge distribution on the surface of the molecules, 
and therefore presents considerable difficulties ; hitherto, a detailed 
calculation could only be carried out for the very simplest casell of He. 
The most successful attempts l2 in this direction so far have applied the 
ingenious Thomas-Fermi method which takes the Pauli Principle directly 
as a basis and is accordingly able, neglecting many unessential details, 
to account for just that effect which is characteristic of this penetration 
mechanism. 

It is impossible here to reproduce the results of these numerica1 
methods. Up to now the repulsive forces have been successfully 
calculated only for the interaction between the rare gas-like ions, not 
yet for the rare gases themselves. This is not because the repulsive 
forces between the neutral rare gas molecules constitute a very different 
problem, but because a considerably smaller degree of exactitude of the 
repulsive forces gives a useful description, when they are balanced by the 
strong ionic attractive forces instead of the weak molecular forces only. 

The chemist a t  present must be satisfied with the knowledge that the 
repulsive forces depend on rather subtle details of the charge distribution 
of the molecules, and that consequently there is no reason to hope that 
one might connect them with other simple constants of the molecules, 
as is possible for the far-reaching attractive forces. Their theoretical 
determination is in any special case another problem of pure numerical 
calculations. But what really will interest the chemist is the fact that 
i t  can generally be shown that these homopolar repulsive forces (in char- 
acteristic contrast with the above-mentioned homopolar binding forces) 
have also the property of additivity, in the same approximate sense as 
the forces are additive, and that, therefore, to a first approximation, 
i t  will be quite justified to assume for the repulsive forces also simple 
analytical expressions, to superpose them simply additively and SO to 
try to determine them from empirical data of the liquid or solid state. 
Whereas formerly one used to presume a power-law of the form b/Rn 
for these repulsive forces, quantum mechanics now shows that an 
exponential law of the form 

gives a more appropriate representation of the repulsion. 

Mayer, Journ. chenz. Physics, 1934, 2, 252. 

be-Wp 

11 J. C .  Slater, physic. Rev., 1928, 32, 349; see also W. E. Bleand J. E. 

1SH. Jensen, 2. Physik., 1936, 101, 164 ; P. Gombar, ibid., 1935, 93, 378. 
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10' 

0.0 / 

I I I in all applica- 
tions of the 
V a n  d e r  
Waals' forces 
a considerable 
f r e e d o m  re- 
ma ins ,  a n d  
this is to be 
noticed when 
o n e  wishes 
to test the 
theory. 

Q 11. Experimental Test. 

It cannot be our task here to 

0.04 

FIG. I .-Intensity distributlon 
and molecular forces. 

reproduce the various applications 
which the molecular forces have 
found hitherto. We confine our- 
selves here to quite a rough and 
simple test of these forces so far as 
this is possible, without adapting the 
still adjustable parameters in ( 2  I) .  

I.  A direct test of the asymptotic 
P6-Iaw of the molecular forces has 

recently been initiated by a very interest- 
ing method, which uses the influence of 
the forces of long range upon the form of 
a spectral line, the so-called pressure- 
broadening. Kuhn13 has shown that if 
the asymptotic law of the interaction be- 
tween atoms is of the form 

c U Z  - 
R p  

13 H. Kuhn, Phil. Mag., 1934, I S ,  987 ; Pmc. Roy. S O C .  A ,  1936 in print; 
see also H. Kuhn and F. London, Phzl. Mug., 1934, 18, 983. 
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24 THE GENERAL THEORY O F  MOLECULAR FORCES 

the intensity in a certain region of the spectral line is given by 
k 

I(v) = P + 3  
(v* - v) P. 

Thus the inclination of log ( I )  as a function of log v gives immediately 
the exponent p .  Thereupon Minkowski l4 has discussed his measure- 
ments of the broadening of the D-lines of Na by Argon. He gives the 
following figure of his measured values of log ( I )  (Fig. I). In addition, 
we have drawn the lines corresponding to p = 5 ,  p = 6 and p = 7. 
One sees that the accuracy of the measurements does not yet permit an 
exact determination of p .  But in any case we may say that p = 6 
fits much better than p = 5 or p = 7, and that p = 8 and p = 4 can 
be excluded with certainty. 

2. Testing the theory by the gas equation we shall restrict ourselves 
here to a quite rough check by means of the Van der Waals’ a and b only. 
If this test has a satisfactory result, the exact dependence of the second 
virial coefficient on temperature may be used for determining backwards 
the still adjustable parameters in (21). But since i t  is always possible to 
get a fairly good agreement with the second virial coefficient by adjusting 
an expression like (21) i t  seems desirable to simplify the situation in such 
a way that, if possible, no adjustable parameters would be involved. 

Accordingly, we replace (21) by : 
= {-- c/R6 for R ZR, 

(22) + 00 for R < R, 
That means we idealise the molecules as infinitely impenetrable spheres, 
and neglect for R > R, the two adjustable terms be--Rlp and - d/R8 
entirely. For large values of R the term - c/R6 is certainly the only 
noticeable one. For mean distances R z R o  the two neglected terms, 
having different sign, may to a large extent cancel each other. For 
R < R, the very sudden increase of the exponential repulsion is replaced 
by an infinitely sudden one. By this procedure the order of magnitude 
of the minimum of U may be affected by a common factor, but will not 
be completely mutilated. Instead of the three adjustable parameters of 
(21) we have now only one : the size R,. 

The second virial coefficient B, is defined by the development of the 

gas equation into powers of 1 V.  

and is given theoretically by 

I In the development of B, into powers of - the first two terms can be T’ 
identified with the corresponding terms of Van der Waals’ equation : 

14 R. Minkowski, 2. Physik, 1935, 93, 731. 
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F. LONDON 

0.47 
1-92 
3-17 

25 

0.59 
2-03 
2.80 

The comparison gives : 

1-64 
I -69 
1.86 
2-42 

7-18 

3'94 
4'45 
6-65 

B , = b - p - - p + .  a . . , 

1.86 
2-06 
2.09 
2-70 

7'43 

5'05 
5'52 
6-2 I 

and if we now substitute (22) into (23) and consider that for high 
temperatures U > - kT for all values of R, we obtain : 

2 nN ,-,Roa b =  

In these two equations we may eliminate RO3 and obtain : 

ab = - 49NL3.c=r.51 x 10a.c 
9 

Here the numerical factor is so determined that a, as usual, is measured 
in [atm. cm.6 g.-2] and t in the units of Table I. 

If b is taken from the experimental gas equation the relation (24) 
can be used for predicting the constant a. These values are listed as 
&hem. in Table V., where they can be compared with the experimental 
values aexp. 

TABLE V.-VAN DER WAALS  CONSTANT AND HEAT OF SUBLIMATION. 

H e  . 
N e  . 
-4r . 
Kr . 
Xe . 
H 2  * 

N2 * 

CH, . 
co, . 
c1, . 
HCl . 
HBr . 
HI . 

% 

bexp. 
Icm-31. 

24 
I7 
32'3 

51'5 

26.5 
39'6 
31'9 
38.6 
42'7 
42-8 
54'8 

3943 

40.1 
44'2 

atheor. 10-' 
atm. cm. *g -S ] *  

4'8 
26 
163 
253 
430 

46 
I47 
I35 
I 66 
256 
334 
680 

283 
510 

P. 

1-46 
1'70 
3'2 

1-03 
1-43 
1-05 
0.53 

2'00 

1.56 
2-73 
3-58 

I 

l 

I t  is needless to say how inadequate the use of the critical data is for 
determining the limiting values for T 3 00 of the second virial coefficient. 
These inadequacies may produce an uncertainty of perhaps 30 per cent., 
and our simplified expression (22) may also introduce an error of such 
an order of magnitude. But these uncertainties will presumably give 
rise only to a common systematic error for all molecules considered, and 
though the good absolute agreement found in the list is to be regarded 
as a lucky chance the relative agreement between theoretical and experi- 
mental U-values over such a wide range is certainly not disputable. That 
may justify trying to improve our knowledge of the Van der Waals 
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26 THE GENERAL THEORY O F  MOLECULAR FORCES 

forces by adjusting the expression (21) by means of the empirical second 
virial coefficient. Hitherto this has only been tried l5 by adding a law 
of the form b/Rn for the repulsion. But this procedure inevitably gives 
too small a molecule size, as it must attribute to the P6-forces what is 
due to the neglect of the R-*-forces and of the sudden decrease of the 
exponential repulsion. 

3. In Table V. is also listed the Zattice energy L (sublimation heat 
extrapolated to absolute zero after subtraction of the zero-point energy) 
for some molecule lattices, calculated on the basis of the same simplified 
formula (22). In all cases we have assumed closest packed structure, as 
this structure is a t  least approximately realised in the molecular lattices 
in question. The summation of (22) over the lattice gives 

' [r:l] = 3.04 X 10"- p2[ - (25) L = 8-36 . NL~$IO* - M 2  mol ' 

Here c is to be taken from Table I., ZI is the experimental mol. volume, 
p = density, M = molecular weight. 

This test is instructive in so far as it shows plainly the additivity 
of the forces, and particularly the increase of L from HCl to HI with 
decreasing dipole moments clearly demonstrates the preponderance of 
those forces which are not due to the permanent moments.* 

When the full expression (21) will be determined, say, from the 
experimental second virial coefficient it will be possible to calculate all 
constants (compressibility, elastic constants, etc.) of these molecular 
lattices. 

For the constitution of the ionic lattices also, the Van der Waals 
attraction has been found to be a very decisive factor. We know the 
forces at present much better for these ions than for the neutral molecules. 
Using an interaction of the form (21), Born and Mayer l6 have calculated 
the lattice energy of all alkali halides for the NaC1-type and simultane- 
ously for the CsC1-type and comparing the stability of the two types 
they could show quantitatively that the relatively great Van der Waals 
attraction between the heavy ions Csc, I-, Br-, C1- (cf. Table 11.) accounts 
for the fact that CsCI, CsBr, CsI, and these only, prefer a lattice structure 
in which the ions of the same kind have smaller distances from each other 
than in the NaC1-type. The contribution of the Van der Waals' forces 
to the total lattice energy of an ionic lattice is of course a relatively 
small one, it varies from I per cent. to 5 per cent., but just this little 
amount is quite sufficient to explain the transition from the NaC1-type 
to the CsC1-type. 

Paris, Institut Henri PoincarC. 

15 K. Wohl, 2. physik. Chem. B ,  1931, 41, 36 ; J .  E. Lennard- Jones, Proc. 

* In Table V. the lattice energies of He and H, have been omitted, because 
in these lattices the zero-point energy of the nuclear motion gives such a great 
contribution that it cannot be neglected. Therefore H, and He cannot immedi- 
ately be compared with the other substances. See F. London, Proc. Roy. Soc. A ,  

16M. Born and J. E. Mayer, 2. PhysiR, 1932, 75, J. E. Mayer, J. Chem. 

physic. SOC., 1931, 43, 461. 

1936, 1539 576. 
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